Stuttgart Media University

Sequential transfer learning in NLP
for text summarization

A thesis for the academic degree
‘Master of Science’ of

Pascal Fecht

Computer Science and Media
at the Faculty of Print and Media

Reviewer: Prof. Dr.-Ing. Johannes Maucher
External advisors: Dipl.-Ing. Christian Meder
Dipl.-Inform. Hans-Peter Zorn

November 2018 — May 2019

Stuttgart Media University
Faculty of Print and Media
Nobelstr. 10

70569 Stuttgart

Hiermit versichere ich, Pascal Fecht, ehrenwortlich, dass ich die vorliegende Masterarbeit mit
dem Titel: "Sequential transfer learning in NLP for text summarization” selbststdndig und
ohne fremde Hilfe verfasst und keine anderen als die angegebenen Hilfsmittel benutzt habe.
Die Stellen der Arbeit, die dem Wortlaut oder dem Sinn nach anderen Werken entnommen
wurden, sind in jedem Fall unter Angabe der Quelle kenntlich gemacht. Die Arbeit ist noch
nicht veréffentlicht oder in anderer Form als Priifungsleistung vorgelegt worden.

Ich habe die Bedeutung der ehrenwértlichen Versicherung und die priifungsrechtlichen

Folgen (§ 23 Abs. 2 Master-SPO (3 Semester)) einer unrichtigen oder unvollstandigen
ehrenwortlichen Versicherung zur Kenntnis genommen.

Stuttgart, den 09.05.2019

(Pascal Fecht)

Abstract

This thesis investigates recent techniques for transfer learning and
their influence on machine summarization systems. A current
trend in Natural Language Processing (NLP) is to pre-train ex-
tensive language models in advance and adapt these to address
problems in various task domains. Since these techniques have
rarely been investigated in the context of text summarization, this
thesis develops a workflow to integrate and evaluate pre-trained
language models in neural text summarization. Based on news
articles of the CNN / DailyMail dataset [35] and the CopyNet
[32] summarization model, the conducted experiments show that
transfer learning can have a positive impact on summarising texts.
Further findings suggest that datasets with less historical data
are more likely to benefit from transfer learning. On the other
hand, however, this work demonstrates that the components of
text summarization models limit the abilities of state-of-the-art
transfer learning techniques. In the field of machine learning, this
thesis is designed for readers interested in the state-of-the-art in
transfer learning for NLP and its influence on the generation of
summaries.

Keywords Natural Language Processing, Text Summarization,
Transfer Learning, Language Model, Sequence-to-Sequence Model

Zusammenfassung

Diese Arbeit untersucht aktuelle Techniken fiir das Transferlernen
und dessen Einfluss auf Systeme, die Texte maschinell und automa-
tisiert zusammenfassen. Ein derzeitiger Trend fiir die maschinelle
Verarbeitung natiirlicher Sprache ist, extensive Sprachmodelle
vor zu trainieren und diese anschliefend zur Losung verschiede-
ner Problemstellungen zu adaptieren. Da kaum Untersuchungen
dieser Techniken im Kontext des maschinellen Zusammenfassens
existieren, entwickelt diese Arbeit einen Prozess, der vortrainier-
te Sprachmodelle in ein Zusammenfassungssystem integriert und
deren Einfluss evaluiert. Die Resultate dieses Prozesses mit Nach-
richtenartikeln des CNN / DailyMail Datensatzes [35] auf Basis
des CopyNet [32] Zusammenfassungsmodells zeigen, dass Transfer-
lernen das Zusammenfassen von Texten positiv beeinflussen kann.
Weitere Erkenntnisse legen dar, dass Datensétze mit weniger his-
torischen Daten in groflerem Mafle vom Transferlernen profitieren.
Auf der anderen Seite dokumentiert diese Arbeit auch, dass die
Komponenten von Zusammenfassungssystemen die Kapazitdten
aktueller Techniken des Transferlernens limitieren. Im Kontext des
maschinellen Lernens richtet sich diese Arbeit an Leser, die sich
iiber den technologischen Stand des Transferlernens fiir natiirliche
Sprache allgemein, sowie dessen Einfluss auf die Erstellung von
Zusammenfassungen informieren méchten.

iii

Contents

Abstract

Zusammenfassung

List of Figures

List of Tables

List of Abbreviations

1.

Introduction

1.1. Motivation
1.2. Research objectives
1.3. Course of investigation

Theoretical foundations

2.1. Background
2.1.1. Machine learning
2.1.2. Natural Language Processing (NLP)

2.2. Language modeling (LM)

2.3. Word embeddings

2.3.1. Skip-gram and Continuous-Bag-of-Words (CBOW)

2.3.2. GloVe (Global Vectors)
2.3.3. Evaluation and interpretation
2.4. Sequence-to-sequence tasks
2.4.1. Encoder-decoder models
2.4.2. Bidirectional and deep LSTMs
2.5. Attention
2.5.1. Global attention
2.5.2. Self-attention
2.6. The Transformer
2.6.1. Architectural overview
2.6.2. Multi-head attention
2.6.3. Positional encoding

2.6.4. Applications and developments of the Transformer

2.7. Conclusion

State-of-the-art in transfer learning for NLP

3.1. Introduction and demarcation
3.2. Contextual embeddings
3.2.1. Contextual Word Vectors (CoVe)

3.2.2. Embeddings from Language Models (ELMo)

vii

X,

N DN =

O © 00 3O O kW wWw

e e e el el e
O O O = Wi NN o

19
19
20
20
21

Contents

3.3. Fine-tuning language models oo
3.3.1. A framework for pre-training and fine-tuning
3.3.2. Language modeling using a Transformer
3.3.3. Bidirectional Encoder Representations from Transformers (BERT) .

3.4. Conclusion

4. Related work in neural text summarization
4.1. Demarcation and terminology oL
4.2. Related work
4.2.1. Model and task-specific components
4.2.2. Tasksand datasets
4.3. Evaluation of summaries
4.3.1. Content-based metrics (ROUGE)
4.3.2. Measuring the abstractive ability
4.4. Conclusion e
5. Approach and implementation
5.1. CopyNet model as a baseline
5.1.1. Overview e e e e
5.1.2. Further features
5.2. AllenNLP: A Natural Language Processing Platform
5.2.1. Architecture overview
5.2.2. Dataset Reader for text summarization
5.2.3. CopyNetmodel
5.3. Experimental setup L
6. Experiments and discussion
6.1. Features for comparison L o
6.2. Baseline analysis
6.2.1. Downsized datasets for this thesis
6.2.2. Evaluation of the datasets
6.3. Self-attention
6.4. Pre-Trained word embeddings
6.5. Contextual embeddings
6.5.1. Smaller datasets
6.5.2. ELMo fine-tuning o
6.6. Summary and discussion
7. Conclusion and outlook
Bibliography
A. Appendix

vi

A.1. AllenNLP configuration for text summarization on CNN / DailyMail

47
47
48
49
51
52
53
54
56
o7
58

61
63

69
69

List of Figures

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.

4.1.

5.1.
5.2.
5.3.
5.4.

6.1.

Continuous-Bag-of-Words (CBOW) and Skip-Gram model [58].
2-dimensional plot of patterns in GloVe embeddings.
Sequence-to-sequence processing with an encoder-decoder model [11]..
Stacked (deep) bidirectional LSTM model.
Global attention in sequence-to-sequence models [51].
The Transformer encoder-decoder model [84].
Scaled-dot-product-attention and multi-head-attention in the Transformer [84].

Taxonomy for transfer learning in NLP [73].
The two stages of contextual vectors (CoVe) [55].
ELMo model with stacked-bidirectional LSTM cells.
Language modeling with a Transformer decoder model [68].
Comparision of sequential transfer learning approaches [19].
Processing input sequences in BERT [84].

Taxonomy of tasks and datasets in abstractive text summarization.

Architecture of the components in AllenNLP with the CopyNet model.
Components and interfaces of data readers in AllenNLP.
Implementation of the CopyNet model based on AllenNLP.
Workflow of experiments during training and testing.

Course of validation ROUGE scores of BASE with contextual embeddings.

— © 00 =3

19
20
22
25
27
28

34

vii

List of Tables

4.1. Comparison of recent approaches for abstractive summarization. 32
4.2. Rouge results for CNN / DailyMail of recent approaches from Table 4.1. . . . 36
6.1. ROUGE scores of the CopyNet model and recent work on CNN / DailyMail. . 49
6.2. Exemplary output instance of the CopyNet model. 50
6.3. Differently sized subsets of CNN / DailyMail for following experiments. 50
6.4. Results of the full CNN / DailyMail dataset and the base, small and mini subsets. 51
6.5. Exemplary output instances of the large, base, small and mini dataset. 51
6.6. Results of the large, base, small and mini dataset. 52
6.7. Exemplary output instances using a biLSTM and a self-attention encoder. . . . 53
6.8. GloVe results of the base, small and mini dataset. 53
6.9. Results of contextual embeddings on the base dataset. 54
6.10. Results of GloVe and OpenAl GPT on the small and mini dataset. 56
6.11. Exemplary output instances of the model with pre-trained GloVe embeddings

and contextual OpenAl GPT embeddings on the small and mini dataset. . .. 57
6.12. Results of fixed parameters and learning ELMo embeddings on BASE and SMALL. 57
6.13. Results of OpenAI GPT 2 on CNN / DailyMail [69]. 59

ix

List of Abbreviations

BERT
BiLM
BiLSTM
BOW
CBOW
CLF
CoVe
ELMo
FFNN
GAN
GloVe
GRU
LM
LSTM
NEG
NLP
NSP
oov
PG

RL
RNN
ROUGE
RR
Seq2seq
SOTA
ULM-FiT

Bidirectional Encoder Representations from Transformers
Bidirectional Language Model

Bidirectional Long Short-Term Memory Network
Bag-of-Words

Continuous Bag-of-Words

Classification

Contextual Word Vectors

Embeddings from Language Models

Feed Forward Neural Network

Generative Adversarial Network

Global Vectors

Gated recurrent unit

Language model

Long Short-Term Memory Network

Negative Sampling

Natural Language Processing

Next Sentence Prediction

Out-of-Vocabulary

Pointer Generator

Reinforcement Learning

Recurrent Neural Network

Recall-Oriented Understudy for Gisting Evaluation
Repetition Rate

Sequence-to-sequence

State-of-the-art

Universal Language Model Fine-tuning for Text Classification

xi

1. Introduction

1.1. Motivation

Summarizing is the ability of writing a brief summary of the essential content given in a text.
Humans use their literacy to understand the overall meaning of the text, identify crucial
parts and write the summary in their own words. Driven by the rise of the world wide web,
however, the amount of publicly available texts has been rising sharply. The overwhelming
extent of resources reaches the limits of human abilities to process the available data. In
this context, automatic summarization systems have a great potential to compress texts
and to aid users to focus on the essentials.

Two types of approaches for automatic summarization systems can be distinguished. Fxtrac-
tive methods aim to identify the crucial information of a written text and solely copy these
parts as summary [15, 80]. As a result, longer sequences of words in a summary are usually
not fluid and easily readable text. To encounter this, abstractive methods aim to express the
summaries in coherent and fluent text [75, 61]. However, teaching a computer to summarize
with abstractive methods is a complicated task. This requires a brief introduction to the
field of Natural Language Processing (NLP).

The understanding and processing of natural language is still a challenging task in artificial
intelligence. Computational techniques are applied to understand single characters and
words, the connection between words and the big picture of a text. On top of this, computers
cannot interpret words as they are but have to transfer them to numerical representations.
Fortunately, the developments in the field of machine learning show promising results in
learning machine-readable word representations [58, 64].

In the field of text summarization, recent abstractive methods profit from the rise of deep
neural networks [81]. First, neural approaches learn deep representations to understand the
overall meaning of the text and to identify crucial parts. Besides this, the second challenge
in abstractive text summarization is to write a summary with sequences of words in a
fluent style. The neural approaches in abstractive text summarization face this challenge
by writing new sequences word-by-word and are thus categorized as sequence-to-sequence
models. This type of models has recently been addressed with neural networks by separating
the reading (encoding) of words from the writing (decoding) of words [11].

From another point of view, a summarization system is optimized for the objective of a
single task. In contrast to this, a question answering system, for instance, is only applicable
to understand and answer questions. Regarding the humans’ behavior, this workflow would
be on par with learning the literacy and the task-specific skills from scratch. Consequently,
the human ability to transfer learnings is essential to solving unseen and new tasks in natural
language.

1. Introduction

In order to be able to reuse previously learned knowledge, transfer learning methods share
beneficial information across multiple tasks. In other fields of machine learning like computer
vision, transfer learning for image classification with ImageNet [18] has become a widespread
workflow [7, 70]. For natural language, word embeddings compress the sparse input data
and capture the meaning of words in a dense representation [58, 64]. Even though these
representations cannot overcome the obstacle of learning the task- and domain-specific
knowledge from scratch, word embeddings provide a better starting point for the initial
layer in neural networks.

Going one step further, recent approaches in NLP transfer deep neural networks for multiple
text classification tasks [65, 68, 19]. The large-scale models are trained once and subsequently
adapted to several tasks with varying objectives like question answering or natural language
inference (NLI) [19]. This process is referred to as sequential transfer learning [73]. Since
approaches in sequential transfer learning incorporate a deep language understanding across
multiple tasks, they have great potential to address the challenges in text summarization.

1.2. Research objectives

This thesis studies the abilities of transfer learning for the task of text summarization. The
main hypothesis of this thesis is the following;:

Sequential transfer learning with deep neural networks in natural language processing
promotes the task of abstractive text summarization.

The following research questions are asked to address this hypothesis:
1. How do recent approaches address transfer learning for NLP?
2. How do deep neural networks achieve the state-of-the-art in text summarization?

3. Can the task of text summarization benefit from sequential transfer learning?

1.3. Course of investigation

This thesis is divided into seven chapters: After this introduction and the definition of the
research objectives, Chapter 2 describes the theoretical fundamentals in machine learning,
neural networks, and NLP. Subsequently, Chapter 3 addresses the first research question
by presenting a taxonomy of transfer learning for NLP and recent approaches in the field.
Afterwards, Chapter 4 focuses on the second research question by defining abstractive text
summarization and introducing related work.

Chapter 5 describes the approach of the practical part of this thesis. In this context, the
implementation of the neural summarization model is presented, and the experimental setup
for the following chapter is provided. Based on the state-of-the-art in transfer learning and
text summarization as well as the baseline summarization model, Chapter 6 addresses the
third research question. For this reason, experiments analyze and discuss the influence of
differently sized datasets, self-attention, pre-trained word embeddings and recent transfer
learning approaches on the generation of summaries.

In conclusion, Chapter 7 reflects the presented findings and outlines directions for further
research.

2. Theoretical foundations

This chapter provides the theoretical foundations for this thesis. The first section shortly
introduces NLP and machine learning and defines the relevant fields for this thesis. The
subsequent sections discuss approaches for the tasks of language modeling and word embed-
dings. These are particularly useful for sequential transfer learning in NLP (see Chapter 3).
The following sections explain recurrent sequence-to-sequence (seq2seq) models, attention
in general, and the improvements of attention for seq2seq models. Finally, Section 2.6
introduces the fully attention-based Transformer model.

2.1. Background

This section introduces machine learning and natural language processing (NLP). As these
are only explained wvery briefly, this thesis presupposes knowledge of the basics in the
respective field. Consequently, the aim of the following sections is not to introduce the
theory but to define the notation and terms for the remainder of this thesis.

2.1.1. Machine learning

Machine Learning is the subfield of artificial intelligence which deals with teachning machines
to learn from experience. Mitchell [60] defines, "A computer is said to learn from experience
E with respect to some task T and some performance measure P, if its performance on T, as
measured by P, improves with experience E'. In conventional programming, engineers craft
rules and programs to compute answers for input data. Machine learning, however, leads
to a paradigm shift such that models learn the rules to achieve a task based on experience
given through data and answers.

In machine learning, a model receives n input instances of a dataset D in the form of vectors
r; € R? with dimensionality d. For supervised learning, the training target of x; is given
through its label y;. In unsupervised learning, however, the dataset has no labels. The
machine learning approaches in this thesis are classification tasks which interpret y; as
predefined class label. In contrast to this, y; is a continuous value in regression which is
out-of-scope for the remainder of this thesis.

Discriminative classifiers approximate the posterior probability P(Cj|z;;©) for class C;
given the input x; with a set of parameters ©. During training, the model is optimized to
predict the best probabilities given the gold target r;. In this context, the objective function
J(D, ©) measures the error between the predicted y; and expected outcome 7;. The training
goal is to minimize (or maximise) the objective function. In the scope of this thesis, the
optimization method is stochastic gradient descent [41].

Neural networks A neural network is a framework for discriminative machine learning
algorithms which inolves one or multiple layers with non-linear activation functions. The

2. Theoretical foundations

concept was inspired by the function and connection of neurons in the human brain [73]. A
neural network consists of an initial input layer and a final output layer which computes
categorical distributions from the intermediate values with activation functions like the
softmax or the sigmoid function. Deep neural networks are a subfield of neural networks
consisting of muliple hidden layers between the input and output layer [3]. The idea of these
stacked algorithms is that each successive layer contains a meaningful representation [12].

2.1.2. Natural Language Processing (NLP)

Natural Language Processing (NLP) is a set of techniques for teaching computers to
understand and process natural language. Language consists of words which differ from the
numerical values that computers process. Nonetheless, machine learning algorithms have
led to promising results for a wide range of NLP tasks such as part-of-speech (POS) tagging,
machine translation or text summarization [6, 87].

One challenge in NLP is the transfer of unstructured text to machine-readable representations.
From a machine learning perspective, the input in NLP is a text corpus D consisting of
words (u1,--+,uy). These words are uniquely represented in the wvocabulary V of length
L with (vy,---,vg). The principal objective during encoding of words is to capture their
meaning and the relation between words in rich numerical representations.

A Bag-of-Words (BOW) is a simple method to extract features from a text D. In the first
step, a vocabulary V is created which consists of unique n-grams of D. In general, an n-gram
is defined as a continuous sequence of n words in a text. Single words (1—grams) are called
unigram. In the second step, the bag-of-words scores the occurrences of words. These scoring
functions are often based on counts or frequencies. In a simple example, a bag-of-words
might contain the counts of occurrences of unique words (unigrams). For information
retrieval in language, however, the occurrence of multiple (n) words in a sequence may be
important. Extending the approach above, a bag-of-words with n-grams may count the
occurrences of a sequence of n words in D.

2.2. Language modeling (LM)

Manning, Raghavan, and Schiitze [54] define, "A language model is a function that puts
a probability measure over strings drawn from some vocabulary". From the probabilities
of a sequences of words P(ui,---,uy), a language model derives the probability P(u; |
u1, -+, uj_1) of a word u; given a sequence of previous words (uq,---,u;—1). This is due
to the fact that the conditional probability can be expressed as the probabilities of two
subsequences [26].

N-gram models One fundamental kind of language models counts n-grams and outputs
the most likely word based on the frequency of these n-grams [10]. Therefore, the probability
P(uy,uo,---,upn) of a sequence can be approximated by the product of the probability of
each word u; given n — 1 previous words as

N

P(u, - un) = [[Pui | wimgu—1y -+ ui1)- (2.1)
=1

2.2. Language modeling (LM)

Let count,(s) be a function that counts the n-grams of a sequence s. The conditional
probability can be approximated from the observed frequencies of an n-gram model as

countn(ui_(n_l), S UG-, Uj)

P(ui | wi—n—1y, -, ui—1) = (2.2)

county (Wi—(n—1y, ", Ui—1)

However, n-gram models are very sparse, and as k increases, the captured data is not
sufficient to generate the next word. Furthermore, a specific n-gram which misses in the
training data is unkown during inference. For this reason, smoothing techniques are a
common practice to create more robust n-gram based models [10]. However, this thesis
focuses on a different type of language models: neural language models.

Neural language models Generally speaking, neural networks are able to learn distributed
representations. Neural language models use this ability and learn continuous-valued
representations that fight the course of dimensionality [5]. The course of dimensionality in
language modeling refers to the fact that the number of potential sequences of words grows
with the size of the vocabulary. For instance, a sequence with 10 words from a vocabulary
of size 100,000 results in 10°° possible sequences of words [4]. In this context, distributed
representations provide a better generalization since unseen sequences of words may have
similar features to known sequences from training.

Bengio et al. [5] propose a probabilistic language model as one layer feed-forward neural
network (FFNN). Similar to the n-gram model beforehand, the neural language model
approximates a probability for a word given its context of n — 1 previous words, i. e.
P(u; | wi—(n—1," -, ui—1). However, in the approach by Bengio et al. [5], the FFNN requires
a pre-defined and fixed-length context which typically includes only five to ten previous
words [59]. Recurrent Neural Language Models (RNN LM) overcome this deficiency with
recurrent states covering much longer contexts [59]. Recent approaches with recurrent and
self-attention based language models are introduced later in this thesis.

Training objective and perplexity In contrast to other tasks such as sentence classification
or translation, language models do not have a particular task like predicting a class label or
translate a word. On top of this, language models can be very extensive with millions of
input words. Thus, these models are evaluated with their perplexity during training and
testing. Perplexity is a widely-known metric from information theory to evaluate probability
distributions. In machine learning and NLP, the perplexity is a measure of how well the
model predicts samples and is closely related to the cross-entropy loss.

Let an n-gram based language model have the vocabulary size N, an approximation of the
cross-entropy as objective function J(®) is

1
J(©) = N > log P(u; | i1y, -+ Ui-1) (2.3)
i=1
where P(u; | 4j—(n—1), -+, ui—1) is the probability distribution of a neural network with the

parameters ©. The perplexity is b/(®) where b is the base of the log. For the binary cross
entropy above, b = 2 and the perplexity is simply 27(©).

Regarding language modeling as NLP task in the scope of this thesis, the objective is
to capture a sequence of words and predict the next word or character with the highest

2. Theoretical foundations

probability. This objective makes language modeling one of the few unsupervised learning
tasks in NLP. The training target, respectively the next word, is directly given from the
text corpus. Since resources of plain text are overwhelming in the web, language models
are trained on a large text corpus. Nowadays, common datasets have between millions [57]
and a billion [9] training words. Large-scale language models on these datasets are the
powerhouse of pre-trained models in NLP and discussed in Chapter 3.

2.3. Word embeddings

As explained in the previous sections, computers require the transformation of free text into
numerical representations. The most straight-forward approach, one-hot encoding, represents
words as atomic vectors in a high-dimensional space. One-hot encoded representations are
unique vectors with only 0’s and a single 1. For instance, a vocabulary with L distinct words
has L representations such that v; = [1,0,---,0], v2 =[0,1,0,---,0] and vy, = [0,---,0,1].
However, the human vocabulary consists of a vast amount of distinct words resulting
in extremely high-dimensional and sparse representations. Secondly, distances between
representations are identical and do not provide information about the linguistic similarity
of words in the vocabulary [58, 64].

Background Embeddings overcome this issue by representing words as dense vectors in
a Continuous Vector Space Model. There are two different methods of word embeddings
which aim to reflect the meaning of a word. First, count-based methods use statistics such
as how often words co-occur in a specific context and create embeddings by reducing the
dimensionality of the collected data. Secondly, context-predicting models learn the word
vectors directly by optimizing the abilites to predict a word vector in a given context [2].

Reference to language models The task of language modeling has the objective to predict
a word given its context (see Section 2.2). Valuable word representations also require an
understanding of the word in different contexts. Consequently, language models and word
embeddings are deeply-connected and recent approaches [55, 65] extract the embeddings
directly from the internals of trained language models (see Section 3.2). Due to computational
reasons, traditional word embeddings and context-predictive models are not directly derived
from language models [58]. The following section briefly introduces two common word
embedding models: word2vec and GloVe.

2.3.1. Skip-gram and Continuous-Bag-of-Words (CBOW)

Mikolov et al. [58] introduce two different models: The skip-gram model and the Continuous-
Bag-of-Words (CBOW). Both models compute word embeddings by operating on a local
context which is restricted to a fixed window size 2n + 1. Further, both approaches slide this
window over the text corpus and distinguish between 2n context words and a single center
word u;. However, the models follow different objectives which are illustrated in Figure 2.1
and described below.

(a) Continuous-Bag-of-Words (CBOW) The objective of the CBOW model is similar to
neural language models. As illustrated on the left side of Figure 2.1, the model aims to
predict the center word u; based on the sum of context words. In contrast to unidirectional

2.3. Word embeddings

$
© OO ©E

(a) CBOW model b) Skip-gram model

Figure 2.1.: Continuous-Bag-of-Words (CBOW) and Skip-Gram model [58].

language models, the model does also take the future context (u;t1,---,uj+n) into account.
Following the notation of Equation 2.3, the training objective J(©) can be defined as

J(®) - _7ZIOgP U; | Uj—my oty Uj—1, Uj1y "0 7u’i+n)‘ (24)
=1

(b) Skip-gram The right side of Figure 2.1 illustrates the skip-gram model. In contrast to
the CBOW, the skip-gram model has an inverted objective to predict the context words
given a single center word u;. Hence, the objective function J(®) can be defined as

N
J<®>=—]1V§_;(> logPluis) (2.5)

—n>j>n,#0

word2vec Skip-gram and CBOW are shallow neural networks that compute the probability
distribution with a softmax function. However, this softmax operation requires the most
computational time in the model and has constrained word embeddings for years [64]. Thus,
a significant contribution of the above approach relies on the successful approximation of
the softmax [58]. This thesis will, however, not cover the approximation of the softmax in
detail. The skip-gram model with an approximated softmax using negative sampling (NEG)
[33] on a large corpus resulted in the publicly available word2vec embeddings.

2.3.2. GloVe (Global Vectors)

Another approach by Pennington, Socher, and Manning [64] implements a count-based
model to capture the meaning of words regarding the entire corpus. Generally speaking,
Global Vectors (GloVe)) are representations which rely on information given by ratios of
co-occurrence probabilities. In the first step, the model iterates over a text corpus and
counts the global co-occurrences of words. These are collected in a co-occurrence matrix X
in which each cell X;; captures how often a word ¢ appears in the context of j. Further, ¢
and j are part of a predefined vocabulary.

2. Theoretical foundations

In the second step, the co-occurrences matrix X is compressed to vector values in continuous
space. Pennington, Socher, and Manning [64] propose a weighted least squares objective
which minimizes

N
J(©) = Y f(Xy)(w] wj + b; + w5 — log X;5)? (2.6)
t,5=1

where w; is the word vector with bias b; for word ¢ and w; is the context-vector with bias Ej
of word j. On top of this, the weighting function f assigns lower weights to uncommon and
noisy word pairs. With W and W, the model generates two sets of word vectors which are
supposed to perform equally if X is symmetric [64]. The GloVe model has been trained on
varying sized datasets from one up to 42 billion (Common Crawl) tokens of data. Except for
Common Crawls, the model builds a vocabulary of the 400,000 most frequent words [64].

2.3.3. Evaluation and interpretation

Another reason for the popularity of word2vec and GloVe is their interpretability. First, the
cosine distance between two word vectors is a useful metric to measure the relatedness of
words in the vector space [58]. The nearest neighbors of a target word refer to the word
vectors with the highest similarity to the target word. These neighbors tend to be related in
their meaning. For instance, the four nearest neighbors of the word frog in the pre-trained
GloVe embeddings are frogs, toad, liteoria, leptodactylidae’.

Secondly, Figure 2.2 shows linear patterns observed from a two-dimensional plot of GloVe
embeddings. The left side of Figure 2.2 shows the relation of comparatives and superlatives
like slow, slower and the slowest. Interestingly, the GloVe embeddings encapture valuable
information about the word analogy since the distances are very similar for different
compartives and superlatives. As illustrated on the right side of Figure 2.2, GloVe embeddings
also capture content-specific values like gender-specific data. Following the word vector from

(a) Comparative-Superlative (b) Gender-specific

Figure 2.2.: 2-dimensional plot of patterns in GloVe embeddings (https://nlp.stanford.edu/projects/glove/).

https://nlp.stanford.edu/projects/glove/

2.4. Sequence-to-sequence tasks

king and adding the distance of the word woman ends up to be near the vector of the word
queen, i. e. king + woman = queen. These patterns and other aspects of traditional word
embeddings have been thoroughly investigated [45, 77].

Summary The advances of word embeddings are obvious. Instead of learning patterns
over and over again, word embeddings are a meaningful starting point for machine learning
algorithms in NLP. Furthermore, pre-trained word embeddings such as GloVe and word2vec
have been made available for the public. This is essential for tasks with small datasets
that lack sufficient data to extract complex language patterns. In the scope of this thesis,
word embeddings are the first approach to transfer learnings from one task in NLP to
another task. Thus, Section 6.4 shows the benefits of GloVe embeddings for the task of text
summarization.

2.4. Sequence-to-sequence tasks

Sequence-to-sequence (Seq2seq) tasks, including language modeling, machine translation or
text summarization, aim to generate a new output sequence for a given input sequence. For
language models (see Section 2.2), the output is typically given as a single character or word.
In contrast to this, the task of abstractive summarization, which is the subject of Chapter 4,
aims to summarize an input text in multiple words or even entire sentences. These seq2seq
tasks imply that inputs and outputs can differ in length, i. e. have a variable dimensionality.
However, neural networks require inputs and outputs to have a fixed dimensionality by
design. Encoder-decoder models overcome this limitation and are described in the following
sections.

2.4.1. Encoder-decoder models

A fundamental concept is the separation of two processes: encoding and decoding. While
the encoder processes an input sequence and generates a fixed-length representation, the
decoder uses this intermediate representation to generate output. An early approach by
Cho et al. [11] uses a Recurrent neural network (RNN) as the encoder and another RNN as
the decoder to address the task of neural machine translation. Figure 2.3 illustrates this

encoder-decoder model.
T yl —_— > Y2 E— i

Figure 2.3.: Sequence-to-sequence processing with an encoder-decoder model [11].

X1 X2 Xs

The encoder receives an input sequence (1, - -, zs) and starts to compress the information
of the first word in a fixed-length vector called hidden state hi. Subsequently, each x; with

2. Theoretical foundations

i € [2;s] is compressed in a respective hidden state h; and takes the last hidden state h;_q
as well as the input x; into account:

hi = f(hi—1, ;) (2.7)

where f is a non-linear activation function. By recurrently applying this encoding process
until ¢ = s, the last hidden state hs captures the entire input sequence and is called thought
vector ¢ = hg.

The decoder has the responsibility to predict a new sequence step-by-step. For each decoding
step ¢ with ¢ € [1;¢] where ¢ is the target length, the decoder creates a hidden state h; and
output y;. Regarding the thought vector ¢, the last hidden state h;—; and the decoded
output y;_1, the decoder’s hidden state h; is

hi = f(hi—1,Yi-1,c¢). (2.8)

Finally, the hidden state h; is fed to another activation function g(x) = softmax(zx) to output
the probability distribution

P(yl | Yi—1,- 'ay17c) = g(hi)yi*lac)' (29)

The encoder and decoder are jointly trained by minimizing the conditional log likelihood

N
1
in—— > log P(y; | ©;;© 2.10
min - Sl Pl | 210 (210)
where N the number of training samples and P(x;,y;;®) the probability of z; given y;
approximated with a set of parameters ©.

2.4.2. Bidirectional and deep LSTMs

Long Short-Term Memory Networks (LSTM) are a special kind of recurrent neural networks
that address the problem of learning long-term dependencies in sequential data [36]. However,
this thesis does not introduce the internals of LSTM cells but presupposes a fundamental
understanding of LSTMs?. In the notation of recurrent cells from the Equations 2.7 and 2.8,
LSTMs are treated as activation function f for a recurrent cell such that

hi = LSTM(hi_1, x5). (2.11)

Regarding the task of machine translation, Sutskever, Vinyals, and Le [81] use an encoder-
decoder model with multi-layer LSTM-based cells to significantly outperform statistical
translation methods. The core idea is similar to Cho et al. [11] (see Section 2.4.1) but
improves these previous approaches for two reasons. First and as mentioned beforehand,
LSTM cells have higher capabilities to capture long-dependencies than traditional recurrent
networks [36]. Secondly, the approach builds on a deep-LSTM which stacks multiple LSTMs-
layers on top of each other. Let L be the number of layers of a deep LSTM, each layer
[€ [1; L] contains hidden states in the form of

r = LsTM(AY,, hY). (2.12)

(3 (2

2http://colah.github.io/posts/2015-08-Understanding-LSTMs/

10

2.4. Sequence-to-sequence tasks

Each LSTM cell takes the output of the previous layer hglfl) or respectively hgo) = z; and
the previous hidden state hgl_)l as input. Similar to Equation 2.9, a softmax computes the
output probabilities with the top-most state of the last hidden layer hZ(L) [30].

Bidirectional RNN (BRNN) Generally speaking, a shortcoming of recurrence is their
unidirectional context. A Bidirectional RNN (BRNN) overcomes this deficiency by taking
the positive and negative time direction into account [78]. Given an input sequence
(x1,-+-,xs), a BRNN processes the sequence forwards (z1 to z5) and backwards (zs to
x1). In this context, the forward and backward direction are distinct processing layers and
connected to the same output layer [28].

é;)plylng bi-directionality to LSTMs, one LSTM processes x1 to x5 in a forward hidden state
h; and anothe_r> LSTl\ﬁ[_processes Ts to x1 in a backward hidden state h The resulting
hidden states h; and h; can be described as

ﬁi = LSTM(ﬁl,h CL',L) (213)
i = LSTM(T 111, 22) (2.14)
, -
and are often shallowly concatenated to a hidden state h; = [h;; h;] as output of the

Bidirectional Long Short-Term Memory Network (BiLSTM) [48].

Deep BiLSTM In summary, Figure 2.4 illustrates a bidirectional and stacked LST M model.
At each layer [€ [1; L], two distinct LSTM cells compute a forward hidden state h and
backward hidden state h ; 132 as input for the top next layer (I +1). Finally, the forward and
backward hidden states of the top-most layer (h; WL and h L) are combined.

5 SR

Xi Xit1
Figure 2.4.: Stacked (deep) bidirectional LSTM model.

Bidirectional and deep LSTMs are used in encoders of many seq2seq tasks in NLP. The
stacked-bidirectional RNNs, especially with LSTM cells, are useful to capture the future
context during encoding. In contrast to this, decoders generate outputs step-by-step where
the future does not yet exist. For text summarization, several approaches use a single-layer
biLSTM encoder and a single-layer LSTM decoder [63, 79, 44]. Chapter 3 describes these
approaches in much more detail.

11

2. Theoretical foundations

2.5. Attention

Encoder-decoder models as described in the previous section solve the problem of pre-defined
and fixed sequence lengths. However, the strict separation between encoding and decoding
leads to a single point of communication in the form of a fixed-length thought vector. From the
perspective of how humans solve problems like summarizing a text, such a clear separation
does not seem intuitive. Typically, humans incrementally mark words and sentences that
contain important information instead of reading entire paragraphs without taking notes
in one pass. Consequentially, a pure encoder-decoder model can’t take advantage of the
contextual information provided by the specific corresponding input tokens [1]. This is
where attention comes into place.

2.5.1. Global attention

For the task of natural machine translation, Bahdanau, Cho, and Bengio [1] propose a model
that benefits the decoder from learning to pay attention to parts of the encoded sequence
(memory). More specifically, the decoder uses a mechanism to search for relevant parts
in the input sequence to predict the next output. This kind of attention covers the entire
memory of a model and is also called global attention [51].

Ci |€ (a;)€

Figure 2.5.: Global attention illustrating the source (encoder) hidden states (grey) and target (decoder)
hidden states (white) [51].

An attention-based encoder-decoder model for predicting the i-th output word y; is illustrated
in Figure 2.5. The model consists of source hidden states (hy,- - -, hs) and target (decoder)
hidden states (h1,---,hs). This corresponds to the architecture of sequence-to-sequence
models (see Section 2.4). In addition, an intermediate state h; is defined as

h; = tanh(We[ci; hi]) (2.15)

where W, is a learned parameter and ¢; is the context vector. Expressed differently, the
hidden state h; and context vector ¢; are jointly passed to a layer with a non-linear activation
function (tanh).

12

2.5. Attention

The context vector ¢; is the weighted sum of the input states and defined as

C; = Zaijl_zj (216)
j=1

where an attention weight a;; scores the j-th source state for the i-th decoding step. This
attention weight a;; is

aij = softmax(farn (hi, Bj)) (2.17)

where an attention function fan calculates a normalized alignment score between the target
hidden state h; and a source hidden state h;. The two most common attention functions
are explained below.

Additive attention Bahdanau, Cho, and Bengio [1] propose an attention function as a one
layer feed forward network with

Fattn(hiy hy) = v, tanh(W,[hi; hy)) (2.18)

where v, and W, are learned parameters. Beforehand, the function concatenates the last
hidden state h; with the corresponding source state h;.

Dot-product (multiplicative) attention Following the spirit of additive attention, Luong,
Pham, and Manning [51] simplify the attention function as

hiT W,h j general

_ 2.19
h! hj dot-product ()

fattn(hia }_Z]) = {

where general has an additionally learned parameter W,. While additive and multiplicative
attention are similar in their theoretical complexity, the dot-product attention is more
space-efficient and faster with optimized matrix multiplication operations [84].

2.5.2. Self-attention

Global attention benefits from looking back to the input sequence during the decoding in
encoder-decoder models. In contrast to this, the encoder in models based on LSTMs either
neglects the future context or uses separate forward and backward LSTMs (see Section
2.4.2). However, these two LSTMs do not share parameters and are shallowly combined in
the end. Self-attention lets the sequence attend to its context and weights the relevance of
the respective parts of the input. Hence, self-attention is not limited to encoder-decoder
models.

Lin et al. [48] propose a self-attentive or intra-attentive model for sentence embeddings.
Given a sequence of word embeddings (x1,---,xs), the objective is to create a meaningful
representation of the entire sequence. First, Lin et al. [48] computes the hidden state
h; = [ﬁl, %Z] at the i-th timestep with a forward and backward LSTM (see Section 2.4.2).
Secondly, the approach incorporates self-attention by adapting the additive attention function
(see. Equation 2.18). In contrast to applying attention to source and target states, let

13

2. Theoretical foundations

H = (hy, ho,- -+, hy) be a matrix obtaining n hidden states. The attention weights a; from
Equation 2.17 can be simplified to a single attention weight a as

a = softmax (v, tanh(W,H ")) (2.20)
and the single context vector ¢; from Equation 2.16 to a single context vector ¢ as
c=Ha'. (2.21)

Further, Lin et al. [48] argue that multiple hops of attention are required to capture different
components within a sequence. Thus, instead of learning a vector v, the approach introduces
a learned matrix V,. The corresponding attention matrix A is

A = softmax(V, tanh(W,H ")) (2.22)

and combined with the hidden states H such that

C = AH. (2.23)

Finally, a penalization term P reduces the redundancy in A over multiple hops and ensures
that the model focuses on different parts of the sequence [48]. P is defined as

P =44 = DI (2.24)

where || o ||% is the squared Frobenius norm of a matrix [48].

Another implementation of self-attention, multi-head attention, is the powerhouse of the
Transformer and thoroughly discussed in the following section.

2.6. The Transformer

At each step of generating a character or word, global attention encourages the decoder
to give more weight to the important parts of the input sequence. This successful but
computational-expensive layer [51] addresses the issue of fixed-length vectors between the
encoder and decoder. On the other hand, however, the encoder learns to represent the
input sequence without having benefits of global attention. For this reason, self-attention
introduces a mechansim to aid the encoding of input sequences. Regarding these advances
of attention mechanisms, the question raises whether seq2seq tasks are capable for both,
global attention and self-attention. The answer is The Transformer [84].

2.6.1. Architectural overview

Going even further, the Transformer is an encoder-decoder architecture which is entirely
based on attention without using recurrent neural networks. The model achieved state-
of-the-art results in sequence-to-sequence tasks such as machine translation [84] and has
applications in a variety of tasks in NLP (see Section 2.6.4). While the following section
introduces the architecture and composition of the Transformer in general, the subsequent
sections describe the model in more detail. Figure 2.6 illustrates the architecture of the
encoder-decoder model.

14

2.6. The Transformer

Figure 2.6.: The Transformer model with an encoder (left) and a decoder (right) [84].

Encoder An input sequence x = (21, -+,) is embedded (red) as input for the Transformer
encoder. Following a similar concept of deep LSTMs (see Section 2.4.2), the encoder consists
of N stacked sublayers. Each of these N sublayers computes (1) the multi-head attention
(orange), a form of self-attention, followed by (2) a position-wise feed-forward network
(FFNN, blue). Further, a residual connection [34] surrounds each cell by combining the
past results with new computations and normalizing the output (Add & Norm, yellow).
The output of each layer is the input of the top-next layer, and the output of the final
layer is the decoder’s input. Listing 2.1 technically describes the Transformer encoder as
pseudo-implementation.

layer_input = word_embedding(x) + positional_encoding(x)
for N:
self_attn = multi_head_attention(layer_input)
self_attn norm(self_attn) + layer_input

ffnn = feed_forward_nn(self_attn)
layer_output = norm(ffnn) + self_attn
layer_input = layer_output

© 0 N O U W N =

—
=]

[y
=

encoder_output = layer_output

Listing 2.1: Pseudo-implementation of a Transformer encoder.

Decoder As illustrated on the right side of Figure 2.6, the shape of the Transformer
decoder is similar to the encoder. Listing 2.2 shows a respective pseudo-implementation.

15

2. Theoretical foundations

1 layer_input = word_embedding(y) + positional_encoding(y)

2

3 for N:

4 masked_attn = multi_head_attention(mask(layer_input))

5 masked_attn = norm(masked_attn) + layer_input

6

7 global_attn = multi_head_attention(masked_attn + encoder_output)
8 global_attn = norm(global_attn) + masked_attn

9

10 layer_output = norm(feed_forward_nn(global_attn)) + global_attn
11 layer_input = layer_output

12

13 decoder_output = layer_output

14 y = softmax(linear(decoder_output))

Listing 2.2: Pseudo-implementation of the Transformer decoder.

At the i-th decoding step, the model embeds the already generated words (y1,---,¥i—1)
and feeds the embeddings to the Transformer decoder. Each layer applies (3) a masked
multi-head-attention to encode these embeddings. The mask operation ensures that the self-
attention ignores the future context (y;,---,y:), where t is the target length. Subsequently,
each layer (4) looks back to relevant parts of the encoder which incorporates the concept of
global attention in the Transformer. Finally, the results are fed to (5) a feed-forward neural
network to compute the output of a layer. The top-most layer is the final output, and a
linear layer with softmax classifier generates the output ;.

2.6.2. Multi-head attention

The power of the Transformer is based on two types of attention. In order to separate
the responsibilities in attention [17], each Transformer layer processes three vectors: keys
K € di, values V € d, = dj, and queries Q € dy. The scaled-dot-product attention at the
core of the Transformer modifies the dot-product attention (see Section 2.5) by scaling the

result of the factor —.

Vi,

(a) Multi-head-attention (b) Scaled Dot-product-attention

Figure 2.7.: Attention in the Transformer [84].

16

2.6. The Transformer

Hence, the attention function Attention(Q, K,V) is defined as

T

Vdy,

and Figure 2.7b illustrates the computations of the dot-product-attention.

Attention(Q, K, V) = softmax(

W (2.25)

Let M be the encoder’s output and Z denote the input of a Transformer layer (see
layer_input in Listing 2.1 and Listing 2.2). On the one hand, the global attention between
the encoder and decoder weights the relevance of the encoder’s output (V' = M) for the cur-
rent decoding step. The weight assigned to each value is calculated concering the encoder’s
output (K = M) and the current input (Q = Z) [84]. On the other hand, many approaches
[84, 19, 16] set @ = K =V =7 to encode a sequence with self-attention.

Additionally, the model computes the attention operation with multiple heads. These
attention heads are an implementation to include multiple hops of self-attention (see
Section 2.5.2). Each of the N Transformer layers computes a MultiHead Attention(Q, K, V')
consisting of ¢ € [1; h| attention heads head;

MultiHeadAttention(Q, K, V) = [heady; - - - ; heady|W° (2.26)

where W € R¥moderXdv ig 3 learned parameter. Each head; linearly projects the queries
(QWZ-Q), keys (KWH) and values (VW}'). These projections capture different parts of the
sequence (see Section 2.5.2) and are the input of the actual attention function. Thus, a
head; is defined as

head; = Attention(QWE, KW/, vw}) (2.27)

where the queries, keys and values are shards of dimensionalities dj, = %dk, dy;, = %dv,
dg, = %dq. The Transformer employs h = 8 attention heads with a total dimensionality of
dmodel = D12 and di, = d,,;, = dg, = 64 [84].

2.6.3. Positional encoding

The Transformer with pure self-attention comes with the drawback of losing the position of
inputs in the sequence [84]. However, the position is important for several tasks in NLP, and
a similar obstacle exists for neural networks with convolutional layers [24]. As illustrated in
Figure 2.6, a positional encoding overcomes this limitation in the Transformer by including
positional information to the word embeddings.

In general, positional embeddings can either track the relative or absolute position in the
input sequence. Further, the embeddings can be fixed constraints or learned parameters
during training. An earlier approach for convolutions in seq2seq models learns positional
embeddings during training regarding their absolute position [24]. In contrast to this, the
Transformer uses sinusoidal functions and relative positions. The functional approach aims
to capture a more profound sense of the relative input positions with different frequencies of
the sin and cos functions [84]. More precisely, the approach uses the two frequencies

PEpos,2i) = sin(pos/lOOOO%)
PE(pos2i1) = cos(pos/lOOO()%) (2.28)

17

2. Theoretical foundations

where pos is the absolute position of the input, d = d,04e; the dimensionality of the model
and ¢ the dimension of the function. The hypothesis of relative positions is that these may
scale better for large sequences [84]. Even though the proposal motivates for their sinusoidal
approach, the results compared to learned embeddings are very similar [84].

2.6.4. Applications and developments of the Transformer

The Transformer by Vaswani et al. [84] has been applied and adapted to several problems.
For language modeling, Al-Rfou et al. [72] show that a Transformer with N = 64 layers
outperforms previous recurrent variants. For text summarization (see Chapter 4), Liu et al.
[50] use a Transformer model to capture multiple input documents for the generation of
text summaries. Furthermore, Chapter 3 introduces various approaches [68, 19, 69] of
Transformer models for sequential transfer learning.

A further development of the Transformer addresses the obstacle of capturing large input
texts. Even though self-attention has higher capabilities to capture long-term dependencies
[72], the context-length remains fixed due to memory and computation limitations [16]. For
this reason, Dai et al. [16] propose the Transformer-XL, a model sliding over the input,
computing the self-attention for a fixed-length context and storing the results. Subsequent
windows attend to previous contexts with a recurrent layer on top of the Transformer.

2.7. Conclusion

Machine learning in the field of NLP teaches machines to understand and process natural
language. Approaches like the Bag-of-Words model count the occurrences of words and
build a model based on their frequencies. Furthermore, neural approaches have become an
important tool in a wide range of NLP tasks such as text classification, language modeling
or machine translation.

Language modeling is the task of predicting the next word or character given the sequence
of previous words or characters. Neural language models train on large datasets, oftenly
extracted from the web [57]. Word embeddings have similarities to language models but the
objective of creating meaningful representations of words. The pre-trained word embeddings
[58, 64] are a starting point for NLP models.

Sequence-to-sequence tasks aim to understand and process a sequence and create new
characters or words. These models commonly consist of an encoder which represents the
input sequence and a decoder which generates new outputs. Various approaches use recurrent
neural networks (RNNs) like LSTMs [36] and improve their capabilities by implying deep
models with bidirectional contexts [30].

Furthermore, attention is a technique which follows the idea of learning to attend for specific
parts of a sequence. Global attention improves the output generation because the decoder
looks back to the relevant part of the encoder [51]. On top of this, self-attention learns
to capture the meaning of a sentence [48]. Combining these two types of attention with
seq2seq models, the Transformer solely bases on attention without recurrent states [84].

In conclusion, this chapter exerted the theoretical foundations of language modeling, word
embeddings, seq2seq models, attention and the Transformer in the use-case of transfer
learning for NLP (see Chapter 3) and the task of text summarization (see Chapter 4).

18

3. State-of-the-art in transfer learning for
NLP

This chapter provides an overview of recent advances in pre-training, which show promising
results across a wide range of tasks in NLP. Before introducing the relevant approaches,
the first section classifies the approach of this work in the broad field of transfer learning.
Based on this, Section 3.2 describes contextual embeddings which are an extension to
context-free word embeddings (see Section 2.3). The subsequent sections explain the process
of overcoming the obstacle that transfer learning is currently limited to word embeddings.
These approaches like OpenAI GPT (see Section 3.3.2) and BERT (see Section 3.3.3) are
essential for sequential transfer learning in NLP and the practical part of this thesis.

3.1. Introduction and demarcation

Generally speaking, transfer learning in NLP denotes the process of applying the model of a
source task to a target task. In practice, different approaches exist, and Ruder [73] defines a
taxonomy for transfer learning.

I—[Transfer learning for NLP]ﬁ
Transductive Inductive
transfer learning transfer learning

Tasks Ieamed

Different domains Different languages) Tasks learned in sequence
simultaneously
Domain adaptation Cross-lingual learning Multi-task learning Sequentlal.
transfer learning

Figure 3.1.: Taxonomy for transfer learning in NLP [73].

As illustrated in Figure 3.1, transfer learning in NLP is addressed in two ways. Transductive
transfer learning categorizes methods in which the source and target task have the same
objective. While cross-lingual learning transfers the information to a different language
[74], domain adoption applies the model to another domain [39]. For inductive transfer
learning, however, the objective of the source task is different from the target task. The
goal of sequential transfer learning is first to train a model on one task and then adopt the
model to another task. The adaptation differs from the second type, multi-task learning
[14], in which two or more tasks are jointly learned at the same time.

This chapter focuses on recent and promising approaches for sequential transfer learning.
Furthermore, the practical part (see Chapter 5 and Chapter 6) includes these approaches in
the task of text summarization. Consequently, other applications of transfer learning are
out-of-scope for this thesis.

19

3. State-of-the-art in transfer learning for NLP

Stages of sequential transfer learning Sequential transfer learning consists of the following
two stages [73]:

1. Pre-Training - A model is trained for the source task on a large dataset with high
computational costs and long training times. A common objective of the source task
is to be very generic and applicable to many target tasks.

2. Fine-Tuning - The pre- trained model is transferred to a downstream (target) task?!
with much fewer data. This phase is much shorter, and target tasks can benefit from
an extensively pre-trained source model.

The remainder of this chapter provides a recent history of sequential transfer learning in
NLP using deep neural networks.

3.2. Contextual embeddings

As introduced in Section 2.3, word embeddings such as GloVe or word2vec produce semantic
representations of words. These models iterate over an entire text corpus to generate exactly
one word representation for each unique lexical token. However, this neglects the inherent
ambiguity. For instance, the word rock can either mean a stone or a genre of music, depending
on its context. This word representation remains the same in both cases for context-free
word embeddings such as GloVe. In contrast to this, the following section introduces
recent approaches that aim to overcome this limitation by creating context-dependent word
embeddings.

3.2.1. Contextual Word Vectors (CoVe)

The encoder in sequence-to-sequence-models processes input sequences to meaningful re-
presentations as foundation for the decoder’s predictions (see Section 2.4). For this reason,
encoders seem to be a sensible and feasible solution to capture the contextual information
of a word. Furthermore, language models that aim to predict a word given its context
are in the core comprehensive encoders (see Section 2.2). McCann et al. [55] follow this

l Translation I [Task-specific Model]

A A
(0\
Cove(x) CoVe(x)
CoVe(x) MT-LSTM : :
[MT-LSTM] [MT-LSTM]
GloV A A
ovek) GIo\I/e(x) GIo\I/e(x)
o) o)
(a) Pre-training: Encoder-decoder for machine (b) Fine-Tuning: CoVe with GloVe as input for
translation. a task-specific model.

Figure 3.2.: The two stages of contextual vectors (CoVe) [55].

LA downstream task denotes a supervised target task like text classification or text summarization.

3.2. Contextual embeddings

idea by extracting the deep LSTM encoder of an attentional seq2seq-model trained for
machine translation. The authors claim that extracting contextual information of the
pre-trained encoder leads to various improvements for tasks like sentiment analysis and
question answering.

As illustrated in Figure 3.2, the proposed model has two separate steps. At first, pre-training
is the training of an encoder-decoder model with global attention for machine translation.
The encoder consists of bidirectional LSTM cells whereas the decoder uses unidirectional
LSTMs. The details are out-of-scope for this thesis but refer to a plain architecture of
encoder-decoder models (see Section 2.4). During pre-training, the encoder and decoder
solely train on a dataset for machine translation. After the model performs sufficiently well,
the encoder’s output is re-used to extract Contextual word vectors (CoVe).

More specifically, let x = (z1,---,2) be a sequence of L words and GloVe(x) the corre-
sponding sequence of pre-trained word embeddings. The model calculates a sequence of L
context vectors CoVe(x) as

CoVe(x) = MT-LSTM(GloVe(x)) (3.1)

where MT-LSTM is the encoder of the machine translation. To further increase the influence
of GloVe embeddings, McCann et al. [55] recommend to concatenate the context vectors
with the GloVe embeddings during fine-tuning. Thus, a sequence of final embeddings
€= (617"'76L) is

e = [GloVe(x); CoVe(x)]. (3.2)

In summary, the approach by McCann et al. [55] uses the final output of an LSTM encoder
to extract contextual information of words. Even though the approach shows promising
results, a primary obstacle for sequential transfer learning remains. During pre-training, the
encoder learns to interpret datasets for the specific task of machine translation.

3.2.2. Embeddings from Language Models (ELMo)

Peters et al. [65] generalize the previously introduced approach to learn contextual embed-
dings. In contrast to McCann et al. [55], the approach is based on a bidirectional language
model (biLM) to generate the Embeddings from Language Models (ELMo). As a reminder
to Section 2.2, language modeling is the fundamental task to approximate the probability
for the next word given its preceding words. These language models are trained on much
larger datasets compared to supervised models like machine translation. Further, the task of
predicting the next word given its context is related to some approaches of context-predictive
word embeddings (see Section 2.3).

Bidirectional language model (biLM) Respecting both, the history and future contexts
is a common concept in sequence-to-sequence models (see Section 2.4.2). In Section 2.2,
n-gram based language models have the objective to predict a word wu; given its preceding
words (ug,---,u;—1). This is also referred to as forward language model. In contrast to
this, an n-gram based backward language model approximates the probability of a sequence

21

3. State-of-the-art in transfer learning for NLP

P(uq,---,uy) by the product of the probability of each word w; given n — 1 subsequent
words:

N
P(uy,ug, - un) = [[Pus | wist, -+, Uinn—1))- (3-3)
i=1

Altogether, a bidirectional language model (biLM) is based on the combined probabilities of
a forward and backward model.

Peters et al. [65] implement such a biLM with multiple layers of LSTM cells (see Figure
3.3). Following the notation from Section 2.4.2, let u; be a word at position ¢ and z; the
Word embedding of u;. The b1d1rect1ona1 language model computes a forward hidden state

_>

hi and a backward hidden state h) for each layer [€ [1,---, L] as
AO = LsTM(R Y, HD) (3.4)
— —
R =1sT™M(R Y, RO, (3.5)

(_
For each word u;, the LSTM cells takes the output of the previous layer h; 7= (or h, (1= 1))

respectively the embedded input word h 7O = h; B = x; as input. Furthermore the LSTM

or

takes the preceding h 1 or respectively the subsequent hidden state h 1 into account.

Embedding] [Embedding] [Embedding]

Ui-1 Ui Uiy

Figure 3.3.: ELMo model with stacked-bidirectional LSTM cells.

Fgr the task of language modeling during pre-training, the final hidden states of the forward
(hE) and the backward model (h¥) are softmax-normalized to output two probability
distributions for ;. In this context, the negal networks have distinct parameters for
the forward (© pg7rar) and backward model (© rs7ar). Nevertheless, the approach shares
parameters for the final softmax layer (©5) and the embeddings (0,) [65]. Let D be a text
corpus during pre-training, the training objective J(D, ®) of the overall biLM is to jointly
minimize the negative log-likelihood of the forward and backward model with

22

3.3. Fine-tuning language models

N
1 =
J(D,0) = NZ (log P(u; | w1, -+, ui—1; Oz, © LsTM, O;) (3.6)
i=1

<_
+ (log P(u; | ugs1,- -+, un; Oz, © LsTar, O)). (3.7)

Fine-Tuning After pre-training the forward and backward language models, the final
softmax layer is discarded and the hidden states of each layer are concatenated such that
h(l) [h h ;]@ is the output of layer [for the input word u;. Subsequently, these layers
of the biLM jointly capture the contextual information of a word. More specifically, the
representation R; of the word wu; is a set of hidden states and defined as

Ri={h"|1=1,---,L}. (3.8)

Further, a task-specific weighting function E(R;;©,) collapses R; into a fixed-length vector
resulting in the final ELMo; representation of word u; as

L
ELMo; = E(R;;0,) = 7% Y staskp), (3.9)
j=0

Since each layer of the deep LSTM contributes to the final ELMo embeddings individually,
the softmax-normalized parameter s'*** weights the relevance of each layer. Furthermore,
ytask s a task-specific scaling factor [65]. Similar to the Context Vectors (CoVe) [55], the
ELMo embeddings are combined with word embeddings for the integration into downstream

tasks [65].

In summary, ELMo embeddings are pre-trained word representation extracted from a deep
bidirectional LSTM for language modeling. These embeddings have high capabilities for a
wide range of NLP tasks and improve the state-of-the-art in six different tasks from the field
of text classification [65]. A distinction to previous work is that the embeddings are deep and
extracted from all internal LSTM layers. Nonetheless, there are still two shortcomings. First,
the embeddings are no standalone solution but require the above task-specific parameters
[65]. Secondly, the high-dimensional representations are still compressed to fized-length
vectors coming with the cost of losing information [37].

3.3. Fine-tuning language models

Previous approaches in Section 3.2 demonstrate that contextual embeddings can be beneficial
and enhance context-free embeddings on various NLP tasks [55, 65]. Nevertheless, CoVe and
ELMo are yet an auxiliary input for the embedding layer of the corresponding downstream
model. Besides this, these models are still trained from scratch which limits the capabilities
of transfer learning in NLP. In many cases, the majority of parameters is randomly initialized,
and the model requires large datasets with long training times to converge. In summary,
the contextual embeddings are limited in being beneficial for tasks with smaller datasets.

23

3. State-of-the-art in transfer learning for NLP

3.3.1. A framework for pre-training and fine-tuning

The next step towards transfer learning in NLP is to reuse the entire pre-trained model. For
instance, let a binary classifier detect spam emails and be based on a pre-trained language
model using biLSTM cells. Instead of predicting the next word, the spam classifier adds a
linear layer with softmax to output the probability of a given sequence to be classified as
spam. In this particular example, the number of randomly initialized parameters is limited
to the final layer of a model.

However, approaches in this field have been unsuccessful in recent history, mainly because a
randomly initialized classifier on top of an extensive language model tends to catastrophic
forgetting [37]. Thus, Howard and Ruder [37] propose a toolbox with methods to increase
the generalization and to replace task-specific models with a single language model. This
set of tools is called Universal Language Model Fine-tuning for Text Classification (or:
ULM-FiT) and defines the following three stages for transfer learning in NLP.

1. General-domain LM pretraining in which a large language model is pre-trained on a
large corpus like Wikitext-103 [57]. This is the most time-consuming part but is done
only once for multiple tasks.

2. Target task LM fine-tuning adapts the general language model to the domain-specific
data. For instance, for the task of sentiment analysis on movie reviews like IMDb
dataset [52], the model specifies in the understanding and building sentences of movie
reviews.

3. Target task classifier fine-tuning is the final step which integrates the output of the
language models in the task-specific environment. For text classification tasks, a linear
layer processes the output and a final hidden layer outputs the class probabilities.

Another important observation of Howard and Ruder [37] is the criticality of the final fine-
tuning stage. Since new parameters are not pre-trained but randomly initialized, the risk of
losing information is high [86]. Gradual unfreezing encounters this by freezing pre-trained
layers. The layers are unfrozen once at a time, starting from the top-most layer [37]. This
goes hand in hand with the slanted triangular learning rates (STLR) which first increases
and then decays the learning rate to get a quicker conversion [37].

In summary, ULM-FiT is a conceptual work that introduces a framework to apply sequential
transfer learning in NLP. Based on this idea, the following sections introduce specific
approaches in the field of model fine-tuning.

3.3.2. Language modeling using a Transformer

The Transformer consists of multiple self-attention layers instead of recurrent cells (see
Section 2.6). A multi-layer Transformer is deeply bidirectional compared to biLSTMs
which use a shallow concatenation of a distinct forward and backward model. Furthermore,
the underlying self-attention leads to promising improvements for tasks with long-term
dependencies [84]. For the task of language modeling, an assumption is that the prediction
of a word may benefit from capturing more information in a wider context.

Consequentially, the Transformer seems to have a high potential for language modeling and
transfer learning in NLP. Unfortunately, the encoder-decoder architecture of the original

24

3.3. Fine-tuning language models

Transformer does not fit to the requirements of language models. However, the decoder
of a Transformer approximates the probability of a subsequent word given a sequence of
preceding words. For this reason, Radford et al. [68] extract a Transformer decoder and
train it on a large text corpus for language modeling.

Language model (LM) During decoding, outputs are predicted word-by-word using the
history-only because the future context logically does not yet exist. For this reason, the
original Transformer masks out any potential future information in the decoder (see Section
2.6). As a result, OpenAl GPT implements a unidirectional language model.

Let D be a text corpus, u; the input word at the i-th step and k be the size of the context
window, the training objective is to minimize the negative log-likelihood with

N
1
JLm(D,©) = N > log P(us | i—p, - -+, uim1) (3.10)
i=1
where P(u; | wj—k,---,u;—1) is conditional probability approximated by a neural network

with parameters ©.

Transformer decoder The architecture of the proposed Transformer decoder is illustrated
in Figure 3.4. Given an input sequence U = (uq,- -+, us) with word embeddings W, and
positional embeddings W), (see Section 2.6), the first layer of the multi-stacked Transformer
RO is

hY = UW, + W), (3.11)

Furthermore, the model consists of L = 12 layers with Transformer blocks computing the
hidden state h()) of each layer I € [1, L] with

h® = transformer_ block(h!~1). (3.12)

Each layer performs masked-multi-head attention with h = 12 attention heads (see Section
2.6.2) followed by a position-wise feed forward network. The output of the final hidden layer
is fed to a classifier such that the probability P(u; | u;—,--,u;—1) is approximated as

transposed word embedding

- ~
4 Transformer block \

Masked Multi-Head |

v

Add & Norm]

Softmax

Input »| Embedding

- e e o = o= =

’

Figure 3.4.: Language modeling with a Transformer decoder model [68].

25

3. State-of-the-art in transfer learning for NLP

Puj | wi—g, -+ ui—1) = softmax(hLWeT). (3.13)

Compared to the original Transformer in Section 2.6, the decoder does not require an
encoder-decoder attention-layer. On top of this, the model is more comprehensive with
L =12 layers. Furthermore, OpenAl GPT handles longer sequences with 512 tokens and is
trained for 100 epochs on the large BooksCorpus dataset [88, 68].

Fine-Tuning The pre-trained Transformer decoder model is adjusted for various down-
stream classification tasks. Let C be a labelled dataset for a text classification task. Each
instance of C has an input sequence U = (uy, - - - u,,) and a single label y. Hence, the input
U is fed to the pre-trained Transformer, and output of the final hidden state in the last layer
is hL . The conditional probability P(y | w1, - -, uy) of target y given the input (w1, - - -, Up,)
is

Py | ug, - um) = softmax(hany) (3.14)

where W, is the only learned parameter for the classification task. Furthermore, the fine-
tuning model follows the same objective as the language model to minimize the negative log
likelihood. Thus, Jcrs(C, ©) is

Jors(C,0) = —— Z log P(y | ug, -+, Um). (3.15)
u ,yel
In addition and similar to other work [66], the pre-trained language model objective
Jrm (D, 0) from Equation 3.10 is an auxiliary fine-tuning objective. In conclusion, J(C, ©)
jointly minimizes the negative log-likelihood of the pre-trained language model as well as
the negative-log likelihood of the downstream task with

J(C7 8) = JCLS(Ca ®) + VJLM(Ca ®) (316)

where 7 is a task-specific scalar to scale the LM objective. Radford et al. [68] observe that
the auxiliary loss and the scaling parameter accelerate the convergence during pre-training
and increase the generalization during fine-tuning.

In summary, the approach (1) trains a Transformer decoder and (2) fine-tunes it for different
tasks. Regarding these two stages abstractly, the approach is similar to CoVe [55] or ELMo
[65]. However, instead of fine-tuning the approach for the extraction of word embeddings,
the model replaces the entire encoding part of the downstream task. Further ablation
studies for natural language inference point out that fine-tuning benefits up to 9% from
each Transformer layer [68]. This study substantiates that transfer learning benefits from
the entire model and not only the last layer.

3.3.3. Bidirectional Encoder Representations from Transformers (BERT)

The previously introduced OpenAl GPT uses a Transformer decoder with masked multi-head
attention for language modeling. Compared to ELMo (see Section 3.2.2), the Transformer
decoder is not able to capture the future context during pre-training. For this reason, Devlin
et al. [19] propose the Bidirectional Encoder Representations from Transformers (BERT) to
overcome the obstacle of unidirectionality. For better comparison, Figure 3.5 illustrates the
distinctions between previous approaches and BERT.

26

3.3. Fine-tuning language models

Figure 3.5.: Comparision of sequential transfer learning approaches [19].

ELMo, on the right side, shallowly concatenates a forward and backward LSTM to cover
both contexts. In contrast to this, OpenAl GPT in the middle is based on a deep Transformer
decoder architecture but neglects the future context. Finally, BERT on the right side learns
both contexts with a Transformer in a deeply-bidirectional language model.

Cloze task Building a bidirectional language model on top of a Transformer entails
challenges. First and foremost, the model has to ensure that an input token does not see
itself in a multi-layered context. Otherwise, predictions become trivial since the target word
is part of the input. Thus, Devlin et al. [19] propose a Masked language model (masked LM)
that resembles the idea of a cloze task [82]. Instead of predicting the subsequent word given
a sequence of preceding words, the masked LM masks certain words (targets) in the input
sequence and predicts these with the remaining words. More specifically, 15% of the input
tokens are dedicated as targets and replaced applying the following rules:

o 80%: Replace the target word with [MASK] token, e.g. for the target word cat:
the cat ate the mouse > the [MASK] ate the mouse

o 10%: Replace the target with a random word
the cat ate the mouse > the cat ate chicken mouse

¢ 10% Keep the sample unchanged.
the cat ate the mouse > the cat ate the mouse

Next Sentence Prediction (NSP) The above language model has no knowledge of relations
between two sequences in the input. However, NLP tasks like Question Answering (QA) or
Natural Language Inference (NLI) benefit from the knowledge of the relatedness of sentences
[19]. For this reason, an auxiliary binary classification task is introduced during pre-training.
Given two sequences A and B, the objective is to approximate the probability whether a
sentence B actually comes after a sentence A. BERT samples two sequences from the corpus
with a maximum length of 512. 50% of the time B comes after A, 50% of the time it does
not.

Besides the masking approach, the language model during pre-training of BERT is very
similar to the one of OpenAl GPT. The model uses Transformer (self-attention) cells to
learn the context and is trained to predict the missing (masked) words. Furthermore, the
training objective of BERT is to jointly minimize the mean masked LM likelihood and the
mean NSP likelihood.

27

3. State-of-the-art in transfer learning for NLP

Implementation BERT benefits from its tokenization and the collection of metadata. For
instance, let A = (’I’, ’like’, ’cats’) and B = ("My’, ’dog’, ’is’, ’chasing’, 'them’) be two input
sentences of sequence U = {A; B}. The input words are word-piece tokonized [85] as
illustrated in the top row of Figure 3.6. As usual for Transformer-based models, the word
embeddings (Ejcrs), -, Ejsgp]) are combined with positional encodings (Ep, - - -, Es). In
addition to this, BERT stores metadata in the form of a binary segment which is 0 for
tokens of A and 1 for tokens of B. Hence, BERT processes the combined embeddings and
the metadata.

lreesr) | v | ke] cats' | [1sEPY]| [My | 'dog | is' |'chas' ['##ing | them' | [sEPT]

[ECLS] [E| I Elike I Ecats] [E[SEP]] [Emy I Emy I Eis IEchas I Esting IEthem] [E[SEP]]
Le JO& [& J & J{ee J(es J s [B [& [& [E][Ew]
LoJlo [oo Jlo o Lo o v [v [+ J{a]

Figure 3.6.: Processing input sequences in BERT [84].

Furthermore, a unique token [CLS] prepends the sequence (ug = [CLS]) such that the first
output state hg of the BERT model represents the entire sequence. The hidden states
(h1,- -+, hs) are pooled, fed to a linear layer and later used for text classification during
fine-tuning. The intuition behind this can be illustrated using an exemplary binary spam
classification model. The hidden states are pooled and fed to a linear layer and a softmax
which classifies whether an input is spam. Instead of learning to pool during fine-tuning,
[CLS] or respectively hg learns this behavior during pre-training. Additionally, the [SEP]
token indicates the end of subsequences (A and B) for the NSP classification.

Fine-Tuning The application of the pre-trained BERT model to downstream tasks is
straight forward. BERT does neither use multiple stages like ULM-FiT nor task-specific
scaling parameters (see Section 3.3.1). The only adjustments are made to hyperparameters
like the learning rate and the batch size because the fine-tuning infrastructure is typically
much smaller then during pre-training. As described above, the first hidden state hg is
fed to a task-specific linear layer for classification tasks. For other tasks like token-type
classification tasks, each hidden state h; at state i for token wu; is fed to a linear layer
classifying the token. Last but not least, the hidden states can be directly treated as
contextual word embeddings similar to ELMo in Section 3.2.2. These contextual BERT
embeddings are used in the experiments in Chapter 6.

In summary, BERT introduces a novel masked language model which extends the OpenAl
GPT by a bidirectional context. Furthermore, practical complements like the next sentence
prediction and the classification token learn patterns for fine-tuning tasks. As studies show,
the most significant impact of BERT builds on the masked language model [19]. Another
important impact is based on the complexity of the pre-trained models. The first model,
BERITBAsE, has L = 12 Transformer layers and h = 12 attention heads which is similar to
the OpenAI GPT [68]. These models have around 110 million parameters [19]. The second
model, BERT;, asrcE, consists of L = 24 each of which has h = 12 attention heads with

28

3.4. Conclusion

around 310 million parameters?. The computational resources® to pre-train these language
models is bypassed which implies great chances for sequential transfer learning.

3.4. Conclusion

Transfer learning in NLP can either be transductive or inductive. The focus of this thesis is
on inductive approaches of sequential transfer learning. In the first stage, a large model
is pre-trained ahead-of-time for a source task. The second step fine-tunes the model for a
dedicated downstream task. Contextual vectors like (CoVe) [55] and ELMo [65] improve
the obstacle of traditional word embeddings (see Section 2.3) that the representations are
identical in any context. Even though contextual word embeddings show promising results
[65], the approaches still limit themselves to the embedding layer.

In comparison to computer vision, NLP models are shallower and require different transfer
learning techniques [37]. Approaches like OpenAl GPT [68] and BERT [19] build on
Transformer cells and pre-train large-scale language models. The models are fine-tuned
for downstream tasks and show promising advances towards sequential transfer learning in
NLP. Nevertheless, the downstream tasks are mainly text classifiers which replace the last
layer of the language model with a classifier. Neither OpenAl GPT nor BERT address a
sequence-to-sequence task like text summarization in their approaches [68, 19].

Further work is available in the field of multi-task learning (see Section 3.1). McCann et al.
[56] introduce the decaNLP?, a set of ten popular NLP tasks with the respective datasets to
evaluate the abilities of a trained model for multiple tasks. Furthermore, Radford et al. [69]
propose the OpenAl GPT-2 which shows that language models adapt to downstream task
without any adjustments (zero-shot learning).

Another fact is that the achieved performance relies on extraordinary huge models. The
OpenAl GPT model has around 110 million parameters [68] and the large version of BERT
around 310 million parameters [19]. In comparison to this, the most extensive model of
OpenAI GPT-2 is a Transformer [69] with 1.5 billion parameters which has over a magnitude
more parameters than BERT.

The practical part of this thesis in Chapter 6 examines the influence of sequential trans-
fer learning with approaches like ELMo, OpenAl GPT and BERT for the task of text
summarization.

https: //github.com/google-research /bert
3BERT ARGE Was trained on 16 Cloud TPUs (64 TPUS chips) for 4 days.
“https:/ /decanlp.com/

29

4. Related work in neural text summarization

This chapter introduces the task of generating text summaries in the context of Deep
Learning and gives an overview of related work in this field. This establishes the baseline for
the upcoming experiments in Chapter 5. The first section demarcates the crucial aspects
of text summarization for this thesis and declares a terminology for the remaining thesis.
The subsequent section introduces recent Deep Learning approaches for text summarization
and discusses their concepts and tasks. Finally, the last section explains common metrics to
evaluate generated summaries.

4.1. Demarcation and terminology

The field of automatic summarization has a long history [62] and implies many different
fields and problems. As a reminder, the objective of this thesis is to utilize recent advances
in sequential transfer learning from Chapter 3 on neural text summarization. For this
reason, the following section is not intended to be a thorough introduction about the process
of generating summaries. Hence, neural approaches are only fundamentally compared to
human behaviors, and many linguistic concepts are out of scope for this thesis. The following
section introduces common terms and narrows the relevant topics of this thesis.

Extractive and abstractive summaries As a reminder, there are two established approaches
to summarise a text. FEzxtractive summaries are a concatenation of several words of the
input document, whereas abstractive summaries aim to convey relevant information of
the input and to create a fluent and concise summary [75]. Regarding humans’ behavior,
the abstractive approach seems to be more intuitive. Given an input text, humans would
probably mark important passages (extract information), but instead of just concatenating
them, humans would use their literacy to create fluent summaries. Consequentially, this
thesis focuses on approaches of abstractive summarization. Nevertheless, the distinction
between extractive and abstractive is an important aspect for the evaluation in Chapter 6.

Promises in neural approaches The process of generating summaries requires two capa-
bilities. First, the extraction of important parts requires an understanding of language and
semantics. Second, the creation of concise and fluent summaries build on capabilities to
reorganize, modify and merge information differently [62]. Concerning these requirements,
recent approaches based on Deep Neural Networks show promising results [61, 79]. Further
approaches [42, 20] have been proposed but are not in the scope of this thesis.

Objective As for now, the vast majority of existing approaches generates a single summary
of a single document (see Table 4.1). Thus, this thesis focuses on this particularly problem.
Regarding the terminology, the input is named document respectively D, and the generated
summary by a neural network is called candidate summary respectively S. As explained in

31

4. Related work in neural text summarization

more detail in Section 6.1, approaches commonly evaluate the generated summaries against
a human-written summary. This gold target is called the reference summary or R.

4.2. Related work

For a first impression of recent work in the field of abstractive summarization, Table 4.1
illustrates seven current approaches. In detail, the table explains their underlying concepts,
the applied evaluation metrics and whether the approach uses reinforcement learning (RL),
global attention (A) or a pointer generator (PG).

Dataset Model Metrics RL| A | PG
Kry$cinski CNN/DM | Encoder: BiLSTM ROUGE | v | vV | V
et al. [44] Decoder: LSTM + auxiliary | Novel
language and contextual n-grams
model
Liu et al. [50] | WikiSum | Transformer ROUGE X | v | X
Two-stage extractive- Test-
abstractive framework perplexity
Liu et al. [49] | CNN/DM | GAN ROUGE | v | v | v
G: like [79]
D: CNN text classifier,
max-over-time-pooling,
softmax output)
See, Liu, and | CNN/DM | Encoder: BiLSTM ROUGE X | v |V
Manning [79] Decoder: Attention with METEOR
Coverage vector
Paulus, CNN/DM | Encoder: BiLSTM ROUGE | v | v | V
Xiong, and New York | Decoder: Single LSTM
Socher [63] Times Policy gradient learning
Nallapati CNN/DM | Encoder: Bi-GRU ROUGE | ¥ | v | X
et al. [61] Gigaword | Decoder: Uni-directional GRU
DUC
Gu et al. [32] | LCSTS[38] | Encoder: Bi-GRU ROUGE | ¥ | v | V
DUC Decoder: Uni-directional GRU
Copy mechansim
Rush, Gigaword | Multiple encoders tested ROUGE X | v | X
Chopra, and | DUC (Bag-of-words, Convolutional,
Weston [75] Attention-Based)

Table 4.1.: Comparison of recent approaches addressing abstractive summarization sorted by the most recent
proposals ascending. Highlights and novelities of papers are marked in bold. This table is not
intended to be exhaustive but compares novel and relevant papers for this thesis.

Due to the importance for this thesis, the datasets or respectively tasks are explained
separately in Section 4.2.2. Regarding the metrics, every approach evaluates the results

32

4.2. Related work

using ROUGE, and several approaches define custom scores. Section 4.3 describes and
compares these more thoroughly.

4.2.1. Model and task-specific components

Many approaches in Table 4.1 use a recurrent encoder-decoder model. While earlier
approaches mainly use a Gated recurrent unit (GRU) [13] as recurrent cells, later approaches
use BiLSTM cells for the encoder and unidirectional LSTM cells for the decoder (see Section
2.4.2). However, an interesting approach by Liu et al. [50] is based on a Transformer decoder
with pure self-attention instead of recurrent cells. This follows a similar architecture to the
OpenAl Transformer (see Section 3.3.2) but for text summarization. Another approach by
Liu et al. [49] utilises a Generative Adversarial Network (GAN) [27] with an encoder-decoder
based generator and a CNN as discriminator.

Pointer-generator and coverage In addition to the architecture as described beforehand,
the approaches introduce several task-specific components. An additional pointer-generator
network [32, 79] copies tokens from the source document to the summary via pointing. This
faces the problem that summarization systems tend to have many Out-of-Vocabulary (OOV)
words during inference [79]. Another obstacle of these summarization systems is the repetition
in summaries. A coverage vector [83] addreses this issue by tracking and controlling the
covered and uncovered parts of the source document [79].

Reinforcement Learning (RL) Another concept is the addition of an auxiliary learn-
ing objective which dedicatedly measures the quality of generated summaries. For text
summarization, however, the common ROUGE metric is content-based and therefore not
differentiable [63]. Non-differentiability is a typical scenario for reinforcement learning
techniques. Thus, various approaches from Table 4.1 [63, 49, 44] derive policy-gradient
learning [71] from the task of image captioning. Paulus, Xiong, and Socher [63] define this
as learning "a policy that maximizes a specific discrete metric instead of minimizing the
mazimum-likelihood loss’.

The practical part of this thesis is based on an implementation of the CopyNet model [32]
which uses a copy mechanism similar to a pointer-generator (see Chapter 5). However,
policy gradient learning and coverage are not investigated further in the remainder of this
thesis. This is due to the fact that their improvements are not essential for the third research
objective (see Section 1.2) and their addition would interfere the experiments in Chapter 6.

4.2.2. Tasks and datasets

The tasks in neural abstractive summarization can be distinguished by their objective as well
as the given documents and summaries. Therefore, Figure 4.1 illustrates the three categories
of summarization objectives and common tasks in recent approaches. While sentence-level
summarization deals with documents of a few sentences and summaries of a couple of words,
document-level contains documents and multiple sentence summaries. The third category
is multi-document summarization and aims to summarize multiple documents to a single
summary. The following sections explain the datasets in more detail.

33

4. Related work in neural text summarization

Abstractive]
Summarization J l

~ ~

h Sentence-Level] Multi-Document-Level

[Gigaword] DUC 2004 WikiSum

A 4

h Document-Level

[CNN / Daily Mail] New York Times] [NewsRoom]

Figure 4.1.: Taxonomy of tasks and datasets in abstractive text summarization.

Sentence-level (Gigaword) Rush, Chopra, and Weston [75] propose the Gigaword dataset
to address a task with documents of a few sentences and summaries of multiple words. This is
also called a headline generation task. The dataset is very extensive and consists of 3,800,000
training pairs. Input documents contain around 30 words and reference headlines around 8
words on average [75]. Gigaword has been investigated heavily in neural summarization [75,
61, 47] but simplifies the objective of generating summaries because neural models have to
track a relatively small context.

Document-level (CNN / Daily Mail) Hermann et al. [35] introduce a dataset consisting
of online news articles extracted from CNN and DailyMail websites. The dataset contains
around 300,000 training pairs, and each instance has a document with 781 tokens and a
summary of 56 tokens, on average. Some approaches in Table 4.1 [50, 63, 61] are evaluated
on an anonymized version by Nallapati et al. [61] which replaces named entities. Others [79,
44], however, use a non-anonymized version [79]. The different versions come with the cost
of worse comparability as Table 4.2 shows.

Multi-Document level (WikiSum) Liu et al. [50] propose the WikiSum dataset for multi-
document summarization. The dataset consists of English Wikipedia' articles as summaries
and their citations as the source document. The citations are enriched with Google search
results [50] and trained to cover the content of the Wikipedia article, i. e., the reference
summary. The WikiSum dataset is promising for future approaches since current models
predominantly support document-level only. Furthermore, the extent of the task requires
skills with two steps of extracting and summarizing (see Section 4.1).

Further datasets Besides the datasets above, Table 4.1 references further datasets. First,
DUC2004? is a high-quality sentence-level dataset created by the Document Understanding
Conference (DUC). The small dataset contains 500 documents and is mainly used to test
models, which were trained on larger datasets. Following a similar idea to CNN/DailyMail,

Yhttps: / /www.wikipedia.org/
2https://duc.nist.gov/duc2004/

34

4.3. Evaluation of summaries

New York Times Corpus is another large text corpus with news articles [76]. Last but not
least, a promising dataset for future research is NewsRoom by Grusky, Naaman, and Artzi
[31] which contains over one million summaries extracted from over a hundred million web
pages. The dataset promises a higher diversity than CNN/DailyMail [31].

Addressing the objectives in this thesis, the practical part in Chapter 5 implements a baseline
model to perform document-level summarization with the CNN/DailyMail dataset.

4.3. Evaluation of summaries

The previous sections have addressed recent approaches in neural summarization while
skipping evaluation techniques and metrics. In general, the results of neural summarization
systems are evaluated with a human-written (reference) summary by comparing their
content. The following sections introduce two metrics for a content-based evaluation, which
are essential for the understanding of the evaluation in the practical part (see Section 6.1).

4.3.1. Content-based metrics (ROUGE)

A common metric for text summarization is the Recall-Oriented Understudy for Gisting
Evaluation (ROUGE) [46] which expresses how well the content of a generated summary
covers an ideal human-written summary?. The ROUGE-n score is based on n-grams
(see Section 2.1.2) and measures the similarity of the generated and reference summaries.
Furthermore, ROUGE-L scores the longest-common-subsequence (LCS) [46].

Let fng(z,n) be a function that computes a set of n-grams occurring in text x. Furthermore,
let || @ || be the count of words in a set. Hence, the ROUGE-n(p) score can be defined as

_ ang(5>n)|| - ang(san) N fng(t7n)||
||fng(57n)’| .

where the subscript (P) denotes the precision of the ROUGE-n. The precision counts the
matching n-grams in the candidate summary s and reference summary ¢ and normalizes
them by the total number of n-grams in the candidate summary s. Consequentially, a recall
of ROUGE-n can be defined as

ROUGE—TL(P)(S, t) (41)

ROUGE‘H(R)(S,t) — ang(57n)|| — ”fn!](s7n) N fng(t’n)H (42)

[fng (£,)]
that normalizes the matching n-grams by the total number of n-grams in the reference
summary t. The third n-grams based ROUGE score is ROUGE-nr) which is the harmonic
mean between precision and recall and defined as

ROUGE—D(P) * ROUGE—H(R)

ROUGE-n) = 2 .
M) = 2 F ROUGE-n(p) + ROUGE-n g,

(4.3)

The ROUGE in text summarization is usually evaluated for n = 1 (unigrams) and n = 2
(bigrams). Further, the Rouge-L score measures the longest common subsequence between
the candidate and the target summary. As shown in Table 4.1, many recent approaches

3In the context of thesis, the ROUGE score is defined for the particular task of text summarization under
consideration of a single generated summary and a single reference summary

35

4. Related work in neural text summarization

perform document-level summarization on the CNN / DailyMail dataset. Since the practical
part of this thesis further uses this particular dataset, Table 4.2 shows the ROUGE evaluation
results of recent approaches.

Reference ROUGE-1 | ROUGE-2 | ROUGE-L | Entity-anony.
Kryscinski et al. [44] 40.19 17.38 37.52 X
Liu et al. [49] 39.92 17.65 36.71 v
See, Liu, and Manning [79] 39.53 17.28 36.38 X
Paulus, Xiong, and Socher [63] 39.87 15.82 36.90 v
Nallapati et al. [61] 35.46 13.30 32.65 v

Table 4.2.: Rouge results for CNN / DailyMail of recent approaches from Table 4.1.

The approaches in Table 4.2 are ordered by their publication date. As a reminder to Table
4.1, Nallapati et al. [61] use a pure encoder-decoder model with GRUs. Paulus, Xiong,
and Socher [63] use reinforcement learning and a pointer generator network. See, Liu, and
Manning [79] add the coverage mechanism. For this reason, the approaches outperform the
baseline model on CNN / DailyMail by Nallapati et al. [61] with 4-5 ROUGE points. The
last column in Table 4.2 indicates whether the approaches use the entity-anonymized (v') or
the non-anonymized (X) version. Thus, the approaches are strictly spoken not comparable
to each other. The practical part of this thesis uses the non-anonymized version of the
dataset and baseline results are only compared with these approaches (see Section 5.1).

4.3.2. Measuring the abstractive ability

One primary objective of abstractive summarization is the generation of new words instead
of merely copying the entire source (see Section 4.1). However, the ROUGE score measures
the lexical similarity between reference and candidate summaries, which does not indicate
the level of abstraction. Hence, a generated summary may contain very different words than
the target summary with low ROUGE scores but still expresses a similar meaning.

For this reason, Nallapati et al. [61] report the percentage of matching words that occur
in both, the candidate summary and the input document. In a slightly different notation
to Equation 4.1, let f,4(z,1) be a function that creates a set of words (1-grams) in text
x, || @ || be the number of words in set, s be the candidate summary, and d be the source
document. Hence, the copy rate is defined as

ang(sa 1)~ fng(da 1)”
[fng (s, V|
For a first impression, Nallapati et al. [61] report the copy rate of their approach with

78.70%. This means that only 21.30% of the words in a summary are distinct from tokens
that appear in the vocabulary generated from the source document.

NOVEL-1(s, d) = (4.4)

36

4.4. Conclusion

Novel n-gram The copy rate or NOVEL-1 score compares the unigrams in the candidate
summary and the source document. Kryscinski et al. [44] extend this idea and define a
novel n-gram metric to measure not only the unigrams but also overlaps of multiple words.
Generalizing the notation from Equation 4.4, the novelty score NOVEL-n is defined as

ang(s,n) ~ fng(da”)H
[fng(s;)|

NOVEL-n(s, d) = (4.5)

Another approach by Liu et al. [50] evaluates the summarization model with the score
of an additional language model and its perplexity (see Section 2.2). Furthermore, the
approach adds the log-perplexity as auxiliary learning objective during training which tends
to improve the generated summaries [50]. Another approach by Paulus, Xiong, and Socher
[63] follows a similar idea.

4.4. Conclusion

This thesis focuses on abstractive text summarization which has recently shown promising
developments with approaches of deep neural networks. Commonly based on encoder-decoder
models with attention [75], related work includes components like coverage mechanisms
[79], pointer generators [32, 63], and policy learning [71, 63]. Furthermore, the research
in abstractive text summarization mainly addresses the generation of headlines (sentence-
level) or short summaries (document-level). Further, the content-based ROUGE score [46]
evaluates the generated summaries by comparing their content to a given reference summary.
Consequently, models with better ROUGE scores have a higher lexical similarity to a single
reference summary. However, this leads to a trade-off between expressing the meaning in
different words and lexical overlaps to the target summary [44].

37

5. Approach and implementation

This chapter unveils the practical work of this thesis. In a nutshell, the objective of the
practical part is to conduct experiments that show transfer learning abilities for the task of
text summarization. This combines the previous two theoretical chapters and integrates
several approaches such as self-attention (see Section 2.5.2) or contextual embeddings (see
Section 3.2) in a state-of-the-art summarization model (see Section 4.2). However, before
actually conducting the experiments in Chapter 6, this chapter reveals the general procedure
of implementing and evaluating summarization models.

The first section introduces the CopyNet summarization model which is the baseline for the
remainder of this thesis. The subsequent section deals with the research code framework
AllenNLP which provides the core components of the practical part. Thus, Section 5.2
explains AllenNLP and the concrete implementation of the baseline model. The final section
accounts for the experiment setup of creating and evaluating different runs in Chapter 6.

5.1. CopyNet model as a baseline

The baseline is an implementation of the CopyNet model by Gu et al. [32]. This approach
has been mentioned in Chapter 4 and refers to the sequence-to-sequence approaches of
Table 4.1. Similar to the pointer generator (see Section 4.2.1) in other approaches, a copy
mechanism locates essential segments of the input sequence and puts these to the proper
places in the candidate summary. These segments can either be entire sub-sequences or
entities like names or organizations. The copy mechanism adds an extractive component

and is particularly useful to reduce the number of words that have not seen during training
(OO0V words).

5.1.1. Overview

The CopyNet model relies on an encoder-decoder architecture (see Section 2.4 and Figure 2.4).
Given s words (u1,---,us) in an input document, the words are embedded as (x1, -, xs)
in the first layer. Subsequently, an encoder processes each word u; to an hidden state h;. In
the baseline apgroach, this hidden state is composed of a forward and a backward hidden
state h; = [ﬁl, h ;] that encode the word with recurrent LSTM cells (see Section 2.4.2). The
set of all encoder hidden states is referred to as the memory M = {hy,---, hs}.

Under consideration of the memory M, the decoder generates the summary word-by-word
by reading M in two distinct manners:

1. Attentive read - CopyNet is an attention-based encoder-decoder model that approxi-
mates the probabilities of an output y; (see Section 2.5). Thus, the probability Pyep(e)
of generating an output y; can be expressed as the conditional probability of y; given

39

5. Approach and implementation

the hidden state h;, the last decoded output y;_1, the context vector ¢;, and the
memory M, i. e.
Pyen(is g | hisyi—1, ci, M). (5.1)

where g refers to the generation mode. This probability Py, (e) is denoted as the
generation score since the model performs an attentive read via global attention to
access M.

2. Selective read - In addition, the decoder reads the memory M to compute a probability
of copying a word y; from the source document. The probability Pe.py(e) is referred
to as copy score and defined similarly to Pye, as

Peopy(yisc | hi,yi-1,ci, M). (5.2)
where c¢ refers to the copy mode.

In summary, the generation score defines the probability of generating a new token, and the
copy score defines the probability of taking a token from the source document. The overall
probability can be defined as

P(y; | hiyyi—1,¢i, M) = Pyen(yi, 8 | ®) + Peopy(yi, C | @) (5.3)

Let V = {vy,---,vun} be a predefined vocabulary for the CopyNet model. In the approach
of this thesis, the vocabulary consists of the |V| most frequent words extracted from the
training, validation and testing dataset. However, the input sequence (uq,---,us) of an
instance during training or inference may contain words like entity names that are important
for the summary but not part of V. Furthermore, the CopyNet model requires these
words in order to approximate the copy score. For this reason, a second dynamic dictionary
W = {wji, -, wr} consists of the unique words from the input sequence (uy, - - -, us). Besides
this, the UNK token is a placeholder for out-of-vocabulary words. Altogether, the model
approximates probabilities for each word y; € V U UNK U W under consideration of an
individual dictionary W for each input sequence (uq, - - -, us).

More specifically, the CopyNet applies the following heuristic to approximate the copy score
P.opy(®) and generation score Pyep(e):

o (exp(fattn(¥i))), yi €V

Pyen(¥i, 8 | 8i,Yi—1,¢i, M) = { o(exp(faten (UNK))), Y ¢ VUW (5.4)
0 otherwise
e —n) co] 5 1 S W

Pcopy(yuC ’ SiyYia1,Ci, M) = {U(Z].xj—yz exp(f, py(wj))) Y ‘ (5.5)
0 otherwise

where fuun, is the additive attention by Bahdanau, Cho, and Bengio [1] (see Section 2.5)
[32]. Furthermore, feopy () is the scoring function for copying the j-th input word z; € W
with the hidden state h; for output y; which is defined as

fcopy(xj) = tanh(ﬁ;‘ch)hi (5.6)

40

5.2. AllenNLP: A Natural Language Processing Platform

where W, is a learned parameter.

Additionally, o normalizes the terms with both, copy and generation score, using the shared
softmax such that
1

i S vevuiuny eXP(fattn (V) + X pepy exXp(feopy (7)) (5.7)

5.1.2. Further features

The CopyNet distinguishes to traditional encoder-decoder models in the input during
decoding. At the ¢-th timestamp, the decoder typically uses the embedding of the last
decoded word (y;—1) as input (see Section 2.4.1). In CopyNet, however, the input is referred
to as state and contains additional information of the source memory M. Given the decoder
copied the last word from the source document, another attention mechanism decides which
hidden states of the encoder are particularly useful for copying the next word. This is
similar to the attentive read as introduced above and dedicated to improving the copy
mechanism. In case the last hidden word is not part of the source document, the attention
is not computed [32].

In summary, CopyNet is based on an encoder-decoder model with global attention. Addi-
tionally, the decoder learns to copy words or entire sequences from the source document.
At each decoding step, the model computes probabilities for copying the word from source
and generating a word from the vocabulary. These probabilities are jointly optimized with
backpropagation during training by minimizing the negative log-likelihood [32]. In this thesis,
the model is implemented with the framework AllenNLP [23] as introduced in the following
section. For a better understanding, Section 5.2.3 provides a concrete implementation of the
CopyNet model based on AllenNLP and Figure 5.3 illustrates the particular architecture.

5.2. AllenNLP: A Natural Language Processing Platform

Practical approaches in the field of Deep Learning and NLP often target a research objective.
The goal of this thesis is to show the abilities of transfer learning for text summarization.
Research implementations necessitate prototyping with fast development times and immediate
feedback instead of well-tested and stable productive code. Nonetheless, the complexity of
Deep Learning comes along with the data science pipeline of data preprocessing, training,
optimization of the model and evaluation of results. For this reason, even simple prototypes
for the task of text summarization depend on many components to produce stable results.
For instance, the CopyNet model requires encoding, decoding, attending and copying steps.

Consequently, the experiments in Chapter 6 do not implement these components from
scratch but are based on a research framework named AllenNLP![23]. Tt consists of re-usable
components and pipelines to train, maintain and serve models. AllenNLP itself is based on
pytorch?, an open source deep learning platform for research prototyping. Before introducing
the architecture in the subsequent section, motivating features for AllenNLP are:

https://allennlp.org/
Zhttps: //pytorch.org/

41

5. Approach and implementation

o Training loop - AllenNLP defines a training loop with a pipeline of loading data,
batching, iterating, training and evaluating the results. Mature core components
essential to conduct research-oriented experiments.

e Logging and Monitoring - AllenNLP stores checkpoints of the model and handles log-
ging. A Tensorboard? visualizes the training history in real time. During prototyping,
this is particularly useful to get immediate feedback about the performance of a model.

¢ Loosely-coupled and Reusability - AllenNLP enables a fast development process of
research code with hacks during prototyping and consists of reusable components for
different tasks.

e SOTA models - AllenNLP provides the implementation for various tasks which helps
to produce less error-prone code and reproduce the performance.
5.2.1. Architecture overview

Figure 5.1 illustrates the core architecture of the AllenNLP framework with components
involved in training. For inference, Section 5.3 discusses a separate prediction component.

Trainer . Iterator (train) DatasetReader
train epoch

Monitoring ~| (Bucketiterator Tokenizer

Logging

Oke I deXer
eval e ()(;h |telatOI eval

7
| Bucketlterator l
Optimizer

Model

Embedding

CopyNet

Figure 5.1.: Architecture of the components in AllenNLP with the CopyNet model.

Y

— K

Vocabulary

A

The Trainer is a rich component which is responsible for the actual training procedure. In
the beginning, the trainer sets up the training parameters and starts looping over N epochs.
An Iterator, actually one for training and another one for validation, loads data in memory
and handles smart batching. The DatasetReader is another rich component reading from
disk and pre-processing the raw text to an instance. Subsequently, the Model receives the
batches with instances, generates output probabilities and computes the loss during training.
In the final step, the trainer triggers the optimization, logs the epoch results and backs up
the model’s checkpoint. In the next round, the trainer evaluates the model on the validation
dataset, followed by another training run. This training loop repeats this process for N

3https: //github.com /tensorflow /tensorboard

42

5.2. AllenNLP: A Natural Language Processing Platform

epochs. Due to their importance of this thesis, the DatasetReader and Model component
are explained in more details below.

5.2.2. Dataset Reader for text summarization

For text summarization in this thesis, a dataset reader retrieves (source) documents and
reference (target) summaries from disk and creates raw input and output sequences. These
input pairs are processed by exchangeable components as illustrated in Figure 5.2.

DatasetReader Model

[Tokenizer]—)[Tokenlndexer} }{ Embedding I

Figure 5.2.: Components and interfaces of data readers in AllenNLP.

First, a Tokenizer splits the raw text into lists of single tokens, which may be single words,
word-pieces, characters or any other desired behavior. The TokenIndezer creates a lookup
table of tokens by indexing the tokens in the vocabulary. The third data-specific component,
which is part of the model in AllenNLP, is the Embedding. This component receives the
token ids and computes the word embeddings for the model.

This loosely-coupled architecture is the baseline for different experiments in Chapter 6. The
benefits are more understandable using the example of integrating contextual embeddings
like ELMo in AllenNLP (see Section 3.2.2). The goal is to feed input sequences to an
auxiliary ELMo model computing contextual embeddings. In this scenario, the tokenizer
splits the input sequences based on whitespaces and punctuation. The token indexer creates
the numerical representations of these tokens. The ELMo-specific embedder internally uses
the pre-trained ELMo-model that generates the ELMo-embeddings. These are concatenated
with the word embeddings and passed to the encoder. Other approaches like BERT or
OpenAlI-GPT replace the ELMo embeddings but keep the rest of the model unchanged.

5.2.3. CopyNet model

The model component in AllenNLP performs the actual computations and is also exchange-
able due to the requirements of the task. For this thesis and as previously described, the
model is an implementation CopyNet as introduced in theory in Section 5.1. Figure 5.3
illustrates the respective model.

—>»| Embedding > Encoder »| Copy Score
Attention
Y
Decoder »| Gen. Score

Figure 5.3.: Implementation of the CopyNet model based on AllenNLP.

43

5. Approach and implementation

As described in Section 5.1, the encoder receives input embeddings and computes a fixed-
length representation using a BILSTM. The decoder generates two output probabilities for
copying a source token to the target or generating a new token from the vocabulary. For the
generation of new tokens, an additional global attention component computes the generation
score (gen. score) based on the output of the encoder and decoder. For copying tokens
from the source, a copy score weights the output of the encoder and decoder. Finally, the
generation score and the copy score are combined and represent the final output probabilities.

However, the model does not predict a single token with the best score (greedy decoding)
but implements a beam search [29] algorithm. The model generates outputs word by word
and keeps track of k hypotheses of active candidates at each timestep. In the following step,
the model computes the next word for all hypotheses and saves the k new hypotheses with
the highest sequence probability [22]. However, increasing the beam size can significantly
reduce the decoder’s speed. Thus, the number of hypotheses is k = 4 for all experiments in
this thesis, and the model creates 4 candidate summaries for each input document. However,
if not stated differently, the evaluation refers to the most likely candidate summary.

Another task of models in AllenNLP is the computation of the training loss during training.
For the CopyNet model above, the negative log-likelihood is computed and reported to
the trainer, which triggers the optimization of parameters. Similar to other components of
AllenNLP, the CopyNet model is highly configurable. The experiments in this thesis are
limited to varying two components. First, Section 6.3 compares recurrent LSTM encoder
cells to a self-attention encoder. Secondly, the sections 6.4 and 6.5 use different pre-trained
and contextual embeddings.

5.3. Experimental setup

In this thesis, properties like the dataset and task, the encoder type, additional pre-trained
embeddings, the type of model and the evaluation metrics define the setup of experiments.
This section introduces the properties and the workflow to conduct experiments with the
AllenNLP framework.

Workflow overview The primary objective of the workflow is to provide the same environ-
ment for all experiments. The same conditions are an essential baseline for evaluation of
different approaches in Chapter 6. In general, the workflow involves three stages:

1. Creating the vocabulary - The vocabulary is created in a separate step ahead of time
and used for experiments with the same dataset. This removes one complexity from
the training run and accelerates the training for large datasets.

2. Training - The second stage is the training and optimization of the model of an
experiment run. This can take multiple hours or days for each experiment.

3. Testing & Evaluation - In the last stage, the predictor serves the best model from
training and evaluates with a dedicated test dataset. Each experiment uses the same
test dataset.

After conducting several experiments with different properties, the evaluation metrics and
sample predictions are compared and discussed. Essentially, this is the content of Chapter

44

5.3. Experimental setup

6. Before that, however, the following sections take a more in-depth look in the training
and testing stage. Additionally, Figure 5.4 illustrates the two stages and the associated
components.

| Config |—» Trainer Best model Predictor

| T

]
1 Logging : 1 Tensorboard : 1 Metrics : 1 Predictions :
\ \ \ \

Figure 5.4.: Workflow of experiments during training and testing.

Training The left side of Figure 5.4 shows the training. The Trainer loads a configuration
with the properties of an experiment. The configuration is a declarative file in JSON format
and sets up components such as the data reader, the model and the trainer itself. In a
more technical description, the configuration defines the initialization of the components
of AllenNLP. For a better understanding, Listing A.1 illustrates the configuration of the
baseline summarization task on the CNN/DailyMail dataset as referenced in Section 6.2.

Besides the technical details, the declarative configuration comes with a significant benefit:
the separation of experiment definition and implementation. Regarding the prototyping
research programming, the process starts with many constraints in the source code for a
first running baseline. Subsequently, the constraints move to configurable parameters which
enable reproducible and comparable experiment runs.

Furthermore, the trainer has abundant features to track metrics during training and evalua-
tion. In periodic intervals, the component tracks metrics such as the training and validation
loss or the ROUGE scores (see Section 6.1). For visualization, a Tensorboard illustrates
the course of values and shows the learning pattern of models with different configurations.
Finally, the best-performing model is selected by the lowest negative validation log likelihood
and stored on disk for testing and evaluation.

Testing and evaluation After training a model over hours or days, the best model is served
and evaluated with a test dataset. This test dataset is identical for each experiment type.
Similar to the training process, the testing component reports a test loss and the ROUGE
scores for each document-summary-pair (see Section 6.1). Even though these metrics give
a quantitative measure of the generated summaries, the quality of summaries is still very
subjective (see Section 4.1 and Section 6.6). Thus, the testing component stores the best
predictions of testing pairs for each experiment.

45

6. Experiments and discussion

This chapter provides experiments analyzing the transfer learning abilities of pre-trained
models for the task of text summarization. This includes approaches such as self-attention
(see Section 2.5.2), pre-trained word embeddings (see Section 2.3.2) and contextual embed-
dings (see Section 3.2) in the summarization model and workflow of the previous chapter
(see Chapter 5). Before conducting the actual experiments, the first section introduces
the metrics and features for the evaluation. Thereupon, a baseline analysis compares the
summarization model of this thesis to recent approaches. The remainder of this chapter
utilizes three subsets of the CNN / DailyMail dataset to conduct various experiments. The
final section discusses the results and future work.

6.1. Features for comparison

This section explains how the experiments are evaluated and motivates for particular features.
Content-based metrics such as ROUGE have been extensively explained in Section 4.3.
Thus, their theoretical background is not covered in-depth in this section. However, less
common and problem-specific evaluation metrics are explained in more detail.

Content-based (ROUGE) The primary metric to measure the performance of a generated
summary is the evaluation of its content with a reference summary. The respective metric for
text summarization is the ROUGE score [46]. In this thesis, the experiments are evaluated
on unigrams (ROUGE-1), bigrams (ROUGE-2) and the longest common subsequence
(ROUGE-L). Each of these reports the precision (ROUGE-n P), recall (ROUGE-n R) and
F1 score (ROUGE-n F). While the precision suggests how well the generated summary is
reflected by the reference summary, the recall expresses how well the content of the generated
summary covers the reference. On top of this, the F1 Score (ROUGE-n F) measures the
balance between Precision and Recall. Evaluation results that report the ROUGE-n score
without a suffix (F, P or R) refer to the F1 score.

Average length (Length) The length of a summary denotes the total number of words in a
generated summary. In the following sections, the average length of all generated summaries
is referred to as average length (or short: Length). Even though the length is a fairly
trivial measure, this metric can show learning patterns in combination with content-based
metrics like ROUGE. For instance, a high ROUGE score is much easier to achieve on shorter
summaries.

Copy rate The copy rate is another content-based metric to analyze the matching words
between the document and the candidate summary. The copy rate extends the NOVEL-n
from Section 4.3.2 by averaging the result for n € [1,2,3,4]. The respective mean p,, is

1 n
n = > NOVEL-k(s, d). (6.1)
k=1

47

6. Experiments and discussion

In this thesis, p4 for n = 4 is denoted as copy rate. This score is interpretable as a percentage
value of copied n-grams in comparison to the total number of n-grams in the generated
summary. Thus, the copy rate is an indicator of the abstractive abilities and the level of
paraphrasing of the trained model.

Repetition rate (RR) Another metric is the repetition rate which scores a candidate
summary by the number of repetitive words. This is a useful metric for text summarization
since models tend to repeat words and entire phrases [79, 61]. The repetition rate becomes
even more interesting for smaller datasets as used in this thesis. In general, less repetition
indicates a better summary, and the aim is to overcome repetition entirely. The used metric
follows an approach by Cettolo, Bertoldi, and Federico [8] which calculates the repetition
rate for the n-grams of a given text. More specifically, the approach computes the geometric
mean to address the exponential rate decay that exists when n increases [8]. In a similar
notation to the ROUGE score in Section 6.1, the repetition rate RR-n(s) of a candidate
summary s is defined as

"N Fng (5,) — fag(s, k, 1)H><1/n>
e 6.2
" <;£[1 || g (s, K] (6.2)

where n is the maximum number of n-grams, f,,4(s, k) is a function creating a list of k-grams
of s and fy4(s, k,1) consists of unique k-grams of s. Furthermore, || ® || is the number of
words in a set. Similar to the copy rate beforehand, RR-4 with n = 4 is referred to as
repetition rate (short: RR) for the remainder of this chapter.

Exemplary summaries Section 4.3 already points out the difficulties of measuring the
quality of generated summaries with content-based n-gram metrics. Therefore, the following
sections frequently show exemplary predictions from the test dataset to give an insight
into the quality of the summaries. These are subjectively selected and not evaluated using
qualitative methods.

6.2. Baseline analysis

The baseline of the experiments in this chapter is an implementation of the CopyNet
model [32] (see Sections 5.1 and 5.2.3). More specifically, the experiments focus on text
summarization of multi-sentence documents with the non-anonymized version of the CNN
/ DailyMail (CNN/DM) dataset [79] (see Section 4.2.2). An instance represents a pair of
a document with hundreds of words and a target (reference) summary with tens of words.
Similar to recent work [79, 25], the input documents are clipped to a length of 400 words
and the target summaries to a length of 100.

The embeddings of dimensionality de;,,, = 128 are randomly initialized and learned during
training. The encoder is a single-layer bidirectional LSTM of dimensionality den. = 512.
The decoder is a single-layer LSTM of dimensionality dge. = dene. For inference, the model
uses beam search [43] with a beam size of 4. Following recent work [79, 25], the model is
trained with Adagrad [21], a learning rate 1 = 0.15 an initial accumulator value of 0.1. The
same optimizer is reused throughout all experiments.

48

6.2. Baseline analysis

Approach ROUGE-1 | ROUGE-2 | ROUGE-L
CopyNet (this thesis) 35.89 15.90 33.10
See, Liu, and Manning [79] (PG) 36.44 15.66 33.42
See, Liu, and Manning [79] (best) 39.53 17.28 36.38
Krysciniski et al. [44] 40.19 17.38 37.52
lead-3 baseline [79] 40.34 17.70 36.57

Table 6.1.: ROUGE scores of the baseline model and recent work on CNN / DailyMail. (PG) indicates a
seq2seq model with pointer generator, (best) indicates the best model of the correspsonding work.
The lead-3 baseline extracts the first three sentences of the document as a summary.

For the plausibility of the subsequent experiments, Table 6.1 illustrates the achieved ROUGE
scores of the model and recent work from Table 4.1. The CopyNet model implements a
similar mechanism to the pointer-generator by See, Liu, and Manning [79] and achieves
comparable results. Nonetheless, approaches with components such as reinforcement learning
and coverage perform better (see Section 4.2.1). However, the aim of the model is not to
achieve state-of-the-art results but to be a reasonable baseline for the following experiments.
Essentially, the primary outcome of this analysis is that the model performs sufficiently well
to meet the requirements of this thesis.

For a better understanding of the output generation, Table 6.2 shows an exemplary summary
as generated by the CopyNet model. Even though the candidate summary contains relatively
fluent text, there are two shortcomings. First, the model copies not only words but entire
sentences from the source document (see the bold text passages). Regarding the copy rate,
the model copies 92.12% of the n-grams from the source document (see Table 6.4). Secondly,
the candidate summary contains repetitive words and sequences of words (“ young lioness ,
7 and “ young lioness , 7 and “ young lioness ”). The remainder of this chapter deals with
these shortcomings in more detail.

6.2.1. Downsized datasets for this thesis

The CNN / DailyMail dataset is too extensive for a plausible evaluation of the transfer
learning capabilities with recent approaches like OpenAl GPT, BERT, and ELMo. As
illustrated in Table 6.3, the full, respectively LARGE dataset contains almost 300,000 training
pairs and 13,500 validation samples. Each training run is performed on a single GPU with
12 GB of RAM (NVIDIA TITAN X!). Under consideration of this hardware configuration
and the given implementation, the full dataset requires more than three days to converge.

Besides these computational limitations, Ruder [73] hypothesizes that pre-trained models
have a more significant impact on smaller datasets. For this reason, a valuable contribution
is the analysis of sequential transfer learning for smaller datasets with fewer data.

https: / /www.nvidia.com /en-us/geforce /products/10series /titan-x-pascal /

49

6. Experiments and discussion

Document (article)

-lrb- cnn -rrb- the fbi charged a philadelphia woman on thursday with trying to travel overseas
to fight for isis . she ’s one of three women arrested this week on terror charges . two new york
women were also taken into custody . an fbi complaint cites numerous social media messages
dating back to august 2013 that were sent by keonna thomas , 30 , also known as “ young lioness
” and “ fatayat al khilafah . ” one twitter message said , “ if we truly knew the realities ... we
all would be rushing to join our brothers in the front lines pray allah accept us as shuhada -lsb-
martyrs -rsb- . 7 another said , ¢ when you ’re a mujahid -Isb- violent jihadi fighter -rsb- your
death becomes a wedding . ” the fbi said thomas purchased an electronic visa to turkey on march
23 . turkey is known as the easiest place from which to enter syria and join isis . an isis manual
advises recruits to buy round-trip tickets to vacation spots such as spain and then purchase tickets
for their real destination once they arrive overseas , the fbi said . on march 26 , thomas purchased
a ticket to barcelona , with a march 29 departure and an april 15 return to the united states
, the complaint said . it ’s not clear when or where she was arrested . she was charged with
knowingly attempting to provide material support and resources to a designated foreign terrorist
organization . she could be sentenced to 15 years in prison . on thursday , noelle velentzas |,
28 | and her former roommate , asia siddiqui , 31 , were arrested in new york and accused of
planning to build an explosive device for attacks in the united states , federal prosecutors said .
in the past 18 months , the justice department ’s national security division has prosecuted or is
prosecuting more than 30 cases of people attempting to travel abroad to join or provide support
to terrorist groups . of those cases , 18 allegedly involve support to isis . “ the terrorist threat is
more decentralized , more diffuse , more complicated , ” homeland security secretary jeh johnson
told reporters thursday . “ it involves the potential lone wolf actor , it involves the effective

Candidate summary

Reference Summary

the fbi charged a philadelphia woman on
thursday with trying to travel overseas to fight
for isis . keonna thomas , 30 , also known as “
young lioness , 7 and “ young lioness , ” and
young lioness ” and “ fatayat al khilafah ” the
fbi said thomas purchased an electronic visa to
turkey on march 23 .

the fbi cites social media messages sent by
keonna thomas , 30 . she ’s accused of trying
to travel overseas to join isis . thomas is one of
three women facing federal terror charges this
week .

Table 6.2.: Exemplary output instance of the CopyNet model.

Consequently, the experiments in the remainder of this chapter use three subsets of the CNN
/ DailyMail dataset (see Table 6.3). The subsets are sampled from the k starting training
and validation instances of CNN / DailyMail. The intuition of BASE is to represent a task
with much experience. This primarily reduces the computational power of LARGE during

Name Dataset Training | Validation Testing Tr. duration
LARGE | CNN / DailyMail 287,227 13,368 11,490 > 3 days
BASE C LARGE 100,000 4,000 11,490 ~ 18 hours
SMALL | C BASE 20,000 1,000 11,490 ~ 4 hours
MINT C SMALL 3,000 500 11,490 1h20min

Table 6.3.: Differently sized subsets of CNN / DailyMail for following experiments.

50

6.2. Baseline analysis

training. In contrast to this, SMALL and MINI refer to tasks with a small and respectively
a very small number of training and validation instances. These two subsets are used to
show learning patterns of the summarization model on fewer data and to further analyse
the abilities of pre-trained models. Nevertheless, each subset utilizes the full testing set of
11,490 instances for evaluation.

6.2.2. Evaluation of the datasets

In order to gain a first impression of the quality of summaries, the CopyNet model is trained
with the three subsets in a similar configuration to the full dataset beforehand. Each dataset
uses the same vocabulary consisting of the 50,000 most frequent words of the full CNN/DM
dataset. In order to reduce the computational power, the experiments on smaller datasets
are trained for ten instead of 25 epochs. Furthermore, the embeddings are reduced to a
dimension dgp,, = 100 which ensures the comparability to the transfer learning approaches
in subsequent sections. Table 6.4 lists the ROUGE scores, length, copy rate and repetition
rate (RR) for a single training run on the corresponding datasets.

Dataset ROUGE-1 | ROUGE-2 | ROUGE-L | Length | Copy rate | RR
LARGE 35.89 15.90 33.10 54.02 92.12% 0.10
BASE 26.91 9.93 23.72 22.43 92.80% 0.00
SMALL 26.20 9.90 23.90 41.53 87.66% 0.36
MINI 14.93 2.12 13.77 20.80 31.89% 0.25
BASE — LARGE -8.98 -5.97 -9.38 -31.59 0.68% -0.10
SMALL — BASE -0.71 -0.03 0.17 19.10 -5.14% 0.36
MINI — SMALL -11.27 -7.77 -10.13 -20.73 -55.77% | -0.11

Table 6.4.: Results of the full CNN / DailyMail dataset and the base, small and mini subsets.

Large summary

Base Summary

the fbi charged a philadelphia woman on
thursday with trying to travel overseas to fight
for isis . keonna thomas , 30 , also known as
young lioness , ” and “ young lioness , ” and “
young lioness ” and “ fatayat al khilafah ” the
fbi said thomas purchased an electronic visa to
turkey on march 23 .

keonna thomas , 30 , also known as “ young
lioness ” and “ fatayat al khilafah ” turkey is
known as the easiest place from which to enter
syria and join isis .

Small summary

Mini Summary

thomas purchased an electronic visa to
turkey on march 23 . turkey is known as
the easiest place from which to enter syria
and join isis . she could be sentenced to 15
years in prison .

new : fbi: fbi to turkey to turkey

Table 6.5.: Exemplary output instances of the large, base, small and mini dataset.

o1

6. Experiments and discussion

The first finding of Table 6.4 is that BASE generates much shorter summaries than LARGE
while copying many words and sequences from the source document. In contrast to this, the
average of SMALL increases by over 18 tokens per summary compared to BASE and still
reaches similar ROUGE results. However, the repetition rates of BASE and SMALL indicate
that models with fewer data and shorter training times achieve higher ROUGE scores with
much more repetition. Finally, MINI scores significantly worse than larger datasets and
creates short, fragmented and repetitive summaries.

The findings of Table 6.4 are further underlined with the exemplary output instance (see
Table 6.2) of the different datasets in Table 6.5. While MINI creates a fragmented and
nonsense summary, SMALL achieves a higher fluency but still misses essential parts compared
to the reference summary. In summary, the results show that the text summarization system
requires much data and long training times to produce satisfactory results.

6.3. Self-attention

The baseline model uses recurrent states in the form of LSTM networks that encode and
decode sequences. Regarding the Sections 2.5.2 and 2.6, self-attention and the Transformer
in sequence-to-sequence tasks have shown promising results. Thus, this experiment analyses
the benefits of self-attention over recurrent states during encoding. More specifically, stacked-
multi-head attention (see Section 2.6.2) replaces the single-layer bidirectional LSTM of hidden
size N = 512. The self-attention has a hidden dimension H = 256 and uses N = 4 layers. For
the multi-head attention, the model uses h = 8 heads each of which computes the attention
of dimensionality dj, = d,, = dq = 1024 (see Section 2.6.2). Table 6.6 compares the results of
the biLSTM and self-attention on the different datasets for a single training run.

BAsE SMALL MinN1

biLSTM SA biLSTM SA biLSTM SA

ROUGE-1 26.91 27.76 26.20 32.85 14.93 2.14

ROUGE-2 9.93 10.34 9.90 12.83 2.12 0.04

ROUGE-L 23.72 24.50 23.90 29.76 13.77 2.04

Length 22.43 29.21 41.53 58.30 20.80 10.91
Copy rate 92.80% 99.56% | 87.66% 91.92% | 31.89% 19.49%

RR 0.00 0.00 0.36 0.11 0.25 0.21

Table 6.6.: Results of the large, base, small and mini dataset.

For BASE with 100,000 training pairs, the self-attention achieves similar ROUGE scores but
generates longer summaries than the biLSTM. However, the self-attention copies almost any
(copy rate = 99,56%) words and sequences from the source document. Another valuable
finding from Table 6.6 is that self-attention produces significantly better results with less
repetition and longer sequences on SMALL. The comparison of two exemplary output
summaries in Table 6.7 further substantiates these observations. Regarding the results of
MINI, the dataset and training time is not sufficient to create meaningful and fluent output.
However, self-attention has a higher confusion in the beginning and does not generate any
useful content.

52

6.4. Pre-Trained word embeddings

Small biLSTM

Small Self-Attention

Reference

thomas purchased an
electronic visa to turkey on
march 23 . turkey is known as
the easiest place from which
to enter syria and join isis .
she could be sentenced to 15
years in prison

fbi charged a philadelphia
woman on thursday with
trying to travel overseas to
fight . she ’s one of three
women arrested this week on
terror charges . new york
women were also taken into
custody .

the fbi cites social media
messages sent by keonna
thomas , 30 . she ’s accused
of trying to travel overseas
to join isis . thomas is one
of three women facing
federal terror charges this
week .

yahya rashid , a uk national
from northwest london , was
detained at luton airport . he
is due to appear in
westminster magistrates ’
court on wednesday . he is
due to appear in westminster
magistrates ’ court on
wednesday

a uk national from northwest
london , was detained at luton
airport on tuesday after he
arrived on a flight from
istanbul . he been charged
with engaging in conduct in
preparation of acts of
terrorism .

london ’s metropolitan police
say the man was arrested at
luton airport after landing on
a flight from istanbul . he ’s
been charged with terror
offenses allegedly committed
since the start of november

Table 6.7.: Exemplary output instances using a biLSTM and a self-attention encoder.

6.4. Pre-Trained word embeddings

The previous experiments randomly initialize and train the word embeddings during training.
This section uses a first approach of transfer learning by initializing the embedding layer
with pre-trained GloVe embeddings of dimensionality 100 (see Section 2.3.2). Table 6.8
illustrates the results of GloVe embeddings in comparison to the baseline results of the three

datasets from table 6.4.

Bask SMALL Mint
Base GloVe Base GloVe Base GloVe
ROUGE-1 26.91 31.93 26.20 27.49 14.93 17.28
ROUGE-2 9.93 12.49 9.90 10.56 2.12 6.58
ROUGE-L 23.72 28.69 23.90 25.26 13.77 16.13
Length 22.43 50.17 41.53 43.81 20.80 15.45
Copy rate 92.80% 94.96% | 87.66% 84.31% | 31.89% 81.00%
RR 0.00 0.13 0.36 0.33 0.25 0.03

Table 6.8.: GloVe results of the base, small and mini dataset.

In general, the model with GloVe embeddings achieves improvements across all datasets.
Interestingly, the pre-trained word embeddings lead to much longer sequences with more
repetition for BASE whereas the repetition decreases for SMALL. Another finding from Table
6.8 is that the embeddings have a great impact on MINI. Even though the summaries are
not comparable to larger datasets and training times, the copy rate of 81,00% in GloVe
comparison to 31.89% in Base suggest that the summaries express the content better.

593

6. Experiments and discussion

In summary, the results demonstrate that pre-trained GloVe embeddings can be a valuable
starting point for summarization models with datasets of different sizes. Similar to other
tasks in NLP, recent work for text summarization incoorperates GloVe embeddings [63, 40,
25] instead of learning the embeddings from scratch. However, these approaches do not
explicitly report the influence of GloVe embeddings.

6.5. Contextual embeddings

The previous word embeddings are a first step towards sequential transfer learning in NLP.
Going one step further, this section extends the CopyNet model with the three approaches
from Sections 3.2 and 3.3: ELMo [65], BERT [19] and OpenAI GPT [68]. These approaches
are denoted as contextual embeddings and added in addition to the word embeddings.

Let w denote the word embedding and ¢ the contextual embedding of an input . The
overall embedding is the concatenation of the word as well as the contextual embedding
and denoted as e = [w;c|. The embeddings of dimensionality d. = d,, + d. are the input
of the encoder. Due to their large number of parameters, contextual embeddings are not
optimized during training. However, Section 6.5.2 presents the results of fine-tuning and
optimizing ELMo. The word embeddings are not pre-trained in order to be comparable to
the baseline results. Altogether, Table 6.9 shows the results of contextual embeddings with
ELMo, BERT and OpenAl GPT on the BASE dataset for a single training run.

Baseline GloVe ELMo GPT BERT
Dim. (d.) 100 100 1124 868 868
ROUGE-1 26.91 31.93 32.16 31.33 32.17
ROUGE-2 9.93 12.49 13.30 12.56 14.02
ROUGE-L 23.72 28.69 29.26 27.94 29.75
Length 22.43 50.17 44.75 40.71 35.23
Copy rate 92.80% 94.96% 90.95% 96.69% 88.07%
RR 0.00 0.13 0.13 0.06 0.08

Table 6.9.: Results of contextual embeddings on the base dataset.

The dimensionality of the embeddings d. indicates the higher computational costs of models
with contextual embeddings. Comparing the three contextual approaches, ELMo uses a
single layer bidirectional LSTM (see Section 3.2.2) of dimensionality d. = 512 + 512 and
OpenAI GPT utilizes a Transformer decoder of dimensionality d. = 512. The BERT model in
Table 6.9 refers to the pre-trained BERT g 45 model (see Section 3.3.3) since the hardware
configuration does not meet the requirements of the large model.

Regarding the results of the two Transformer-based approaches, BERT and OpenAl GPT
outperform the baseline by around four to five ROUGE points. Since both achieve very
similar results, the bidirectional context of BERT (see Section 3.3.3) only leads to marginal
changes in this setup, especially with the implications as described in the following paragraph.

54

6.5. Contextual embeddings

Another finding of the experiment is that ELMo achieves similar results to GloVe. Hence,
ELMo embeddings encourage the model to create longer sequences with more repetition
than the Transformer-based approaches. In summary, contextual embeddings do have slight
improvements compared to pre-trained GloVe embeddings.

BERT implications Under the configuration and implementation of the experiments, BERT
embeddings come with a major drawback. By design, the pre-trained BERT model can
process sequences with up to 512 word-piece tokens [19] (see Section 2.6). In the experiments,
documents contain at most 400 words which may exceed the length of 512 after word-piece
tokenization. As a result, the overflowing word pieces are ignored and it became apparent
that the model is not robust enough. In the above experiment, the model creates empty
summaries for around 86.07% of the test instances. Thus, the results in Table 6.9 reflect only
1,600 of the full 11,490 test instances. Furthermore, Section 6.5.1 confirms this observation
on smaller datasets and Section 6.6 discusses an improvement for future approaches.

The course of training process Figure 6.1 illustrates the course of validation ROUGE
scores for GloVe, ELMo, OpenAl GPT and BERT during the training run from Table 6.9.
The results are an indicator for the learning process. Since the ROUGE scores are calculated
on the corresponding validation set with 4,000 instances, the scores in Table 6.9 during
testing are lower for all approaches. Regarding the course for ROUGE-1 and ROUGE-L,
the contextual embeddings start with significantly lower scores than GloVe in the beginning
but increase during training. The values of OpenAl GPT are erratic but generally growing.
An important note is that the BERT results neglect the blank summaries (see above).

0.37 4 0.32 4
0.36
030

0.35 A

0.34 A

ROUGE

— GloVe

ELMo
—— OpenAl GPT
—— BERT

— GloVe

ELMo
—— OpenAl GPT
- BERT

0.24 4

T T T T T T T T T T T T
5 10 15 20 25 30 5 10 15 20 25 30
Validation steps in k Validation steps in k

(a) ROUGE-1 (b) ROUGE-L

Figure 6.1.: Course of validation ROUGE scores of BASE with contextual embeddings.

95

6. Experiments and discussion

6.5.1. Smaller datasets

In the next step, the downsized datasets are used to evaluate the hypothesis by Ruder [73]
that pre-trained models have a greater impact on smaller datasets. As described beforehand,
the BERT integration in the concrete scenarios of this thesis is fragile because 86.07% of
the generated summaries are blank (see Section 6.5). Experiments with BERT on SMALL
confirm similar results with 83.54% of blank summaries. On MINI, however, the model
creates summaries for each training instance but these consist predominantly of @@UNKNOWN
tokens. Hence, this section focuses on ELMo and OpenAl GPT having a more robust
integration in the given workflow. Table 6.10 compares the results of SMALL and MINI with
GloVe, ELMo and OpenAl GPT (GPT) to the baseline results of Table 6.4.

SMALL MINT

Base GloVe ELMo GPT Base GloVe ELMo GPT

ROUGE-1 | 26.20 27.49 27.53 30.01 14.93 17.28 23.29 19.34

ROUGE-2 9.90 10.56 10.51 11.93 2.12 6.58 9.12 7.90

ROUGE-L | 23.90 25.26 25.49 27.82 13.77 16.13 21.94 18.24

Length 41.53 43.81 38.83 43.09 20.80 15.37 52.25 15.84
Copy rate | 87.66% 84.31% 78.29% 81.73% | 31.89% 80.85% 83.48% 73.44%

RR 0.36 0.33 0.29 0.24 0.25 0.03 0.36 0.03

Table 6.10.: Results of GloVe and OpenAl GPT on the small and mini dataset.

In general, the results in Table 6.10 show a positive influence of contextual embeddings on
smaller datasets. For SMALL, the Transformer-based OpenAl GPT outperforms the GloVe
embeddings with around 2-3 ROUGE-* points while creating summaries of the same length
and copying less. In contrast to this, ELMo shows very similar results to the pre-trained
GLoVe embeddings. Besides this, Table 6.11 exemplifies the qualitative results. For the
particular output generations, the contextual approach learns to recognize more essential
parts of the input document (see Table 6.2) than the baseline model.

The experiments on MINI in Table 6.10 further support the results of SMALL. The GloVe
embeddings lead to significant improvements over the baseline and OpenAI GPT achieves
between three and five ROUGE-# points more than GloVe. On top of this, the generated
summaries are around fifteen to twenty words on average long and thus much shorter than
SMALL. However, ELMo is an exception since the model achieves higher ROUGE-* scores
by generating much longer summaries with more repetition (RR = 0.36). Regarding the
exemplary output generations in Table 6.11, the summaries do not contain meaningful
content regarding the input text (see Table 6.2). Furthermore, the summary for ELMo
repeats the same sequence of words five times in a row.

In comparison to the results of BASE in Table 6.9, the findings support the hypothesis that
sequential transfer learning has a higher influence on smaller datasets [73].

56

6.5. Contextual embeddings

Small GloVe

Small ELMo

Small OpenAl GPT

two new york women were
arrested this week on terror
charges . turkey is known as
the easiest place from syria
and join isis . turkey is known
as the easiest place from which
enter syria and join isis .

fbi : “ when you 're a mujahid
-Isb- violent jihadi fighter -rsb-
your death becomes a wedding
” turkey is known as the
easiest place from which to
enter syria and join isis .
turkey is known as the
potential lone wolf actor .

new : an fbi complaint cites
numerous social media
messages back back to august
2013 . she could be sentenced
to 15 years in prison . she
could be sentenced to 15 years
in prison .

Mini GloVe

Mini ELMo

Mini OpenAl GPT

homeland security secretary
jeh johnson says it ’s not clear
when or where she was
arrested .

charleston is suspected of
involvement in 32 commercial
robberies dating to november
2013 . charleston is suspected
of involvement in 32
commercial robberies .
charleston is suspected of
involvement in 32 commercial
robberies . (x5)

keonna thomas , 30 , also
known as “ young lioness ”

Table 6.11.: Exemplary output instances of the model with pre-trained GloVe embeddings and contextual
OpenAl GPT embeddings on the small and mini dataset.

6.5.2. ELMo fine-tuning

In the previous experiments, contextual embeddings are fixed parameters and not optimized
during training. This is mainly due to the large number of parameters and the corresponding
training complexity. However, the authors of AllenNLP refer to the fact that ELMo can
negatively impact the first iterations until the bidirectional language model resets its internal
states?. For this reason, Table 6.12 compares result of fixed and learned ELMo embeddings
on BASE and SMALL with a single training run.

ROUGE-1 | ROUGE-2 | ROUGE-L | Length | Copy rate | RR
BAsE (fixed) 32.16 13.30 29.26 44.75 90.95% 0.13
BASE (learned) 28.43 12.51 26.24 26.94 88.20% 0.06
SMALL (fixed) 27.53 10.51 25.49 38.83 78.29% 0.29
SMALL (learned) 28.14 10.85 26.10 39.96 76.52% 0.30

Table 6.12.: Results of fixed parameters and learning ELMo embeddings on BASE and SMALL.

The experiments show different findings for the two datasets. For SMALL with 20,000
training instances, the model achieves very similar results with fixed and learned ELMo
embeddings. In contrast to this, the model on BASE with 100,000 training instances achieves
higher ROUGE-* scores with fixed parameters than fine-tuning the ELMo embeddings.
However, learning ELMo embeddings leads to shorter summaries with less repetition.

2https://github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.md

o7

https://github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.md

6. Experiments and discussion

Another interesting observation on BASE during training is that the model converges after five
epochs with learned parameters whereas the run with fixed parameters requires nine epochs
to converge. Consequently, a simple fine-tuning without methods like gradual unfreezing
[37] is not beneficial in this scenario. In summary, the results show that fine-tuning ELMo
embeddings requires further investigations and specific techniques in order to be beneficial
in the scenario of this thesis.

6.6. Summary and discussion

The implementation of the CopyNet model achieves comparable results to pointer-generator
approaches of recent work [79]. In general, the findings motivate for sequential transfer
learning to improve the generation of summaries. First, pre-trained GloVe, ELMo and BERT
embeddings have found to be useful across the majority of datasets in the experiments.
Furthermore, contextual embeddings have a stronger influence on tasks with fewer data.
The following section discusses the essential findings of the experiments in more detail.

Level of abstraction Abstractive methods aim to paraphrase the content of the source
document in a fluent and concise summary. As the observed copy rates across all experiments
suggest, the CopyNet model incorporates fewer novel words for more extensive datasets and
longer training times. Instead of paraphrasing sentences, the model learns to identify and
extract the essential sequences of the document. This behavior of identifying and copying
sets of words from the source goes in the direction of extractive methods. Thus, one finding
of the experiments is that the model prefers to copy instead of generating novel words from
the vocabulary.

Interpretability of metrics The challenges in evaluating text summaries are discussed in
several parts of this thesis (see Section 4.3 and Section 6.1) and supported by the practical
part in this chapter. First, n-gram based metrics classify words either as true or as false. In
practice, smoothing is a common practice to address this issue [10]. As one finding of this
thesis, the combination of ROUGE, the copy and repetition rate as well as the length of
summaries has found to be a reliable indicator for the quality of a summary. Nonetheless,
human-based observations of the summaries are indispensable, especially in the early stages.

Model fine-tuning One objective of sequential transfer learning is to replace the majority
of a downstream model with the extensively pre-trained language model. Many researched
downstream tasks like text classification or question answering create a thin layer for
classification on top of the pre-trained models [19, 68]. Regarding text summarization and
the implementation in this thesis, the model requires task-specific components such as a
pointer-generator and a decoding component to generate summaries. In the connection,
the large-scale language models with additional summarization-specific components require
enormous computational power. Furthermore, the Transformer-based approaches [19, 68|
are very sensitive to hyperparameters [67]. Hence, efforts in replacing the encoder of
a summarization model with a pre-trained language model were not successful in the
preliminary stages of this work.

58

6.6. Summary and discussion

As a result, the experiments in this thesis treat pre-trained models as contextual embeddings.
Therefore, the deep neural language models are compressed to fixed dimensional vectors and
the encoder, as well as the decoder, have to be trained from scratch for each experiment.
Thus, the sequential transfer learning for the investigated scenario in text summarization in
this thesis is limited to a better understanding of input words and sequences.

Implementation obstacles In the conducted experiments, the word-piece tokenization of
BERT [19] has found to be problematic. While the CopyNet model needs to keep track of
source words in order to copy them during decoding, the BERT model requires word-pieces
to meet the fixed vocabulary of the pre-trained language model. On top of this, BERT has a
maximum limit of 512 word-pieces whereas the CNN/DM dataset has 781 words on average.
One feasible solution might be a sliding window similar to the approach by Dai et al. [16].
Nevertheless, the specific problems such as the word-piece tokenization remain.

Further work in multi-task learning Sequential transfer learning and approaches like
ELMo, OpenAl GPT, and BERT are recent developments that have not been investigated
extensively for text summarization. Gehrmann, Deng, and Rush [25] add auxiliary ELMo
embeddings to their summarization model but do not incorporate the Transformer-based
approaches (OpenAl GPT, BERT). Coming from the other direction, a promising work
is the OpenAl GPT 2 [69]. The further development of OpenAl GPT has over a billion
parameters and addresses several tasks with multi-task learning (see Section 4.1). For text
summarization, the approach evaluates the language model with the CNN / DailyMail
dataset. Table 6.13 illustrates the results.

ROUGE-1 | ROUGE-2 | ROUGE-L
SMALL (no hint) 21.58 4.03 19.47

SMALL (TL;DR:) 29.34 8.27 26.58

Table 6.13.: Results of OpenAI GPT 2 on CNN / DailyMail [69].

The model summarizes without any modifications (zero-shot transfer learning). Thus, the
document is the input and the model generates the hundred following words for this document
[69]. Even though the results are not similar to models with task-specific components, the
approach shows that a pre-trained language model learns to summarize better if the article
ends with an appended TL;DR: token.

99

7. Conclusion and outlook

Recent developments show promising results in sharing knowledge across different tasks in
NLP. Techniques for transfer learning are evolving and focus on the specific requirements of
neural networks models in NLP [37]. In this context, many recent approaches are inductive
methods where the source task is a large-scale language model and the target task is
arbitrary. Their powerhouses are exceptionally extensive models that are trained with
immense computing power and resources [19, 69]. These hold enormous potential for tasks
and problems in natural language with fewer experience.

In abstractive text summarization, deep neural networks obtain enhancing results in con-
junction with task-specific components. The experiments of this thesis have analyzed the
capabilities of a deep neural network to summarize news articles from the CNN / DailyMail
dataset [61]. The observations show that generated summaries often provide the crucial
parts of the corresponding text. However, many words and sequences of words are extracted
and copied from the text without any modifications. Furthermore, the model requires tens
of thousands of training pairs in order to learn to summarize news articles.

Building the bridge to transfer learning for NLP, widespread approaches [19, 37, 68] omit
investigations for the task of text summarization or any further sequence-to-sequence task.
Hence, one primary achievement of this thesis is a workflow to apply transfer learning for
text summarization. The practical foundation includes an implementation of the CopyNet
summarization model [32] with the core components of the research framework AllenNLP
[23]. This setup promotes configurable experiments with exchangeable components and
thus enables the integration and comparison of transfer learning approaches in neural
summarization models.

The conducted experiments suggest that sequential transfer learning is beneficial for summa-
rizing. Pre-trained GloVe embeddings [64] and contextual embeddings extracted from ELMo
[65], BERT [19] and OpenAl GPT [68] have found to be useful across three differently sized
subsets of CNN / DailyMail. Furthermore, it became apparent that contextual embeddings
have a greater impact on smaller subsets with less training records. This observation
supports the hypothesis [73] that sequential transfer learning is more significant on datasets
with fewer instances. In conclusion, the findings and observations in this thesis motivate for
further investigations in sequential transfer learning for text summarization.

For the comparison of different approaches, the experiments in this thesis include pre-trained
models as fixed-length embeddings. The influence of these embeddings is bordered to the first
layer of a neural network. Hence, future work might replace entire parts of summarization
models with pre-trained language models. Another finding of the conducted experiments
is the high number of extracted words and sequences of words from the document. These
results are at odds with the hypothesis that transfer learning may assist the model to
summarise in a more abstractive and fluent style. For this reason, the influence of sequential

61

7. Conclusion and outlook

transfer learning given the CopyNet model has found to be constrained by the task-specific
copy mechanism. Consequently, future research might focus on different summarization
models and approaches. Finally, the results of this work exclusively focus on the CNN /
DailyMail dataset and further investigations might verify these results on different datasets.

In conclusion, transfer learning paves the way for enhancements in many fields of natural
language processing. Nonetheless, transfer learning techniques that are more suitable for
sequence-to-sequence tasks have yet to be developed. Especially for text summarization,
recent neural networks require individual components that exclusively address the challenges
in text summarization. In order to share gained knowledge across multiple tasks in NLP,
one objective is yet the incremental reduction of these task-specific components. One future
direction might include improvements in sequential transfer learning with more powerful
models and enhanced transfer learning techniques. Another promising direction is the field
of multi-task learning which teaches a model to achieve multiple tasks at the same time [69].
In any case, natural language processing with deep learning remains one of the suspenseful
and fast-moving fields in artificial intelligence.

62

Bibliography

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation
by Jointly Learning to Align and Translate. Sept. 2014. arXiv: 1409.0473.

Marco Baroni, Georgiana Dinu, and Germén Kruszewski. Don’t count, predict! A
systematic comparison of context-counting vs. context-predicting semantic vectors.
Tech. rep. 2014. URL: http://ronan.collobert.com/senna/.

Yoshua Bengio. “Learning Deep Architectures for AI”. In: Foundations and trends in
Machine Learning 2.1 (2009), pp. 1-127.

Yoshua Bengio. “Neural net language models”. In: Scholarpedia 3.1 (2008), p. 3881.
DOI: 10.4249/scholarpedia.3881.

Yoshua Bengio et al. “A Neural Probabilistic Language Model”. In: Journal of Machine
Learning Research 3 (2003), pp. 1137-1155. URL: http://www. jmlr.org/papers/
volume3/bengio03a/bengioB3a.pdf.

Erik Cambria and Bebo White. “Jumping NLP Curves: A Review of Natural Language
Processing Research”. In: IEEE Computational Intelligence Magazine 9.2 (May 2014),
pp- 48-57.

Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An Analysis of Deep Neural
Network Models for Practical Applications. May 2016. arXiv: 1605.07678.

Mauro Cettolo, Nicola Bertoldi, and Marcello Federico. “The Repetition Rate of Text
as a Predictor of the Effectiveness of Machine Translation Adaptation”. In: Proceedings

of the 11th Biennial Conference of the Association for Machine Translation in the
Americas (AMTA 2014). 2014, pp. 166-179.

Ciprian Chelba et al. One Billion Word Benchmark for Measuring Progress in Statis-
tical Language Modeling. 2014. arXiv: 1312.3005v3.

Stanley F. Chen and Joshua Goodman. “An empirical study of smoothing techniques
for language modeling”. In: Computer Speech € Language 13.4 (1999), pp. 359-394.

Kyunghyun Cho et al. Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation. 2014. arXiv: 1406.1078.

Frangois Chollet. Deep Learning with Python. Manning, 2018.

Junyoung Chung et al. Empirical Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling. 2014. arXiv: 1412.3555.

Ronan Collobert and Jason Weston. “A unified architecture for natural language
processing: Deep neural networks with multitask learning”. In: Proceedings of the 25th
international conference on Machine learning. ACM, 2008, pp. 160-167.

John M Conroy and Dianne P O’leary. “Text Summarization via Hidden Markov
Models and Pivoted QR Matrix Decomposition”. In: Proceedings of the 24th annual
international ACM SIGIR conference on Research and development in information
retrieval. ACM, 2001, pp. 406—407.

63

http://arxiv.org/abs/1409.0473
http://ronan.collobert.com/senna/
http://dx.doi.org/10.4249/scholarpedia.3881
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://arxiv.org/abs/1605.07678
http://arxiv.org/abs/1312.3005v3
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1412.3555

Bibliography

[16]
[17]

18]

64

Zihang Dai et al. “Transformer-XL: Attentive Language Models Beyond a Fixed-Length
Context”. In: (Jan. 2019). arXiv: 1901.02860.

Michat Daniluk et al. Frustratingly Short Attention Spans in Neural Language Modeling.
Feb. 2017. arXiv: 1702.04521.

Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. In: 2009 IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, June 2009, pp. 248—
255.

Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. 2018. arXiv: 1810.04805.

Bonnie Dorr, David Zajic, and Richard Schwartz. “Hedge trimmer: A parse-and-trim
approach to headline generation”. In: Proceedings of the HLT-NAACL 03 on Text
summarization workshop-Volume 5. Association for Computational Linguistics, 2003,
pp. 1-8.

John Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization * Elad Hazan”. In: Journal of Machine
Learning Research 12 (2011), pp. 2121-2159.

Markus Freitag and Yaser Al-Onaizan. Beam Search Strategies for Neural Machine
Translation. 2017. arXiv: 1702.01806v2.

Matt Gardner et al. “AllenNLP: A Deep Semantic Natural Language Processing
Platform”. In: Proceedings of Workshop for NLP Open Source Software (NLP-OSS).
2018, pp. 1-6.

Jonas Gehring et al. “Convolutional sequence to sequence learning”. In: Proceedings
of the 34th International Conference on Machine Learning-Volume 70. JMLR. org,
2017, pp. 1243-1252. arXiv: 1705.03122v3.

Sebastian Gehrmann, Yuntian Deng, and Alexander Rush. “Bottom-Up Abstractive
Summarization”. In: Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing. 2018, pp. 4098—-4109.

Yoav Goldberg. “Neural network methods for natural language processing”. In: Syn-
thesis Lectures on Human Language Technologies 10.1 (2017), pp. 1-309.

Ian J. Goodfellow et al. “Generative adversarial nets”. In: Advances in neural infor-
mation processing systems (June 2014), pp. 2672-2680. arXiv: 1406.2661.

A. Graves and J. Schmidhuber. “Framewise phoneme classification with bidirectional
LSTM networks”. In: Proceedings. 2005 IEEE International Joint Conference on
Neural Networks, 2005. Vol. 4. IEEE, pp. 2047-2052.

Alex Graves. Sequence Transduction with Recurrent Neural Networks. 2012. arXiv:
1211.3711.

Alex Graves, Navdeep Jaitly, and Abdel Rahman Mohamed. “Hybrid speech recogni-
tion with Deep Bidirectional LSTM”. In: 2018 IEEE Workshop on Automatic Speech
Recognition and Understanding, ASRU 20183 - Proceedings. 2013, pp. 273-278.

Max Grusky, Mor Naaman, and Yoav Artzi. Newsroom: A Dataset of 1.3 Million
Summaries with Diverse Extractive Strategies. Apr. 2018. arXiv: 1804.11283.

Jiatao Gu et al. Incorporating Copying Mechanism in Sequence-to-Sequence Learning.
2016. arXiv: 1603.06393v3.

http://arxiv.org/abs/1901.02860
http://arxiv.org/abs/1702.04521
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1702.01806v2
http://arxiv.org/abs/1705.03122v3
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1211.3711
http://arxiv.org/abs/1804.11283
http://arxiv.org/abs/1603.06393v3

Bibliography

Michael U Gutmann and Aapo Hyvirinen. “Noise-Contrastive Estimation of Un-
normalized Statistical Models, with Applications to Natural Image Statistics Aapo
Hyvérinen”. In: Journal of Machine Learning Research 13 (2012), pp. 307-361.

Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. Dec. 2015, pp. 770—
778. arXiv: 1512.03385.

Karl Moritz Hermann et al. “Teaching machines to read and comprehend”. In: Advances
in neural information processing systems. 2015.

Sepp Hochreiter and Jiirgen Schmidhuber. “Long Short-Term Memory”. In: Neural
Computation 9.8 (Nov. 1997), pp. 1735-1780.

Jeremy Howard and Sebastian Ruder. Universal Language Model Fine-tuning for Text
Classification. Jan. 2018. arXiv: 1801.06146.

Baotian Hu, Qingcai Chen, and Fangze Zhu. LCSTS: A Large Scale Chinese Short
Text Summarization Dataset. June 2015. arXiv: 1506.05865.

Jing Jiang. A Literature Survey on Domain Adaptation of Statistical Classifiers. 2008.
URL: http://www.mysmu.edu/faculty/jingjiang/papers/da%s7B%5C_%7Dsurvey.pdf.

Yaser Keneshloo, Naren Ramakrishnan, and Chandan K. Reddy. Deep Transfer
Reinforcement Learning for Text Summarization. 2018. arXiv: 1810.06667.

J. Kiefer and J. Wolfowitz. “Stochastic Estimation of the Maximum of a Regression
Function”. In: The Annals of Mathematical Statistics 23.3 (Sept. 1952), pp. 462-466.

Kevin Knight and Daniel Marcu. “Summarization beyond sentence extraction: A
probabilistic approach to sentence compression”. In: Artificial Intelligence 139.1 (2002),
pp- 91-107.

Philipp Koehn. “Koehn, Philipp. "Pharaoh: a beam search decoder for phrase-based
statistical machine translation models”. In: Conference of the Association for Machine
Translation in the Americas. Springer, Berlin, Heidelberg, 2004, pp. 115-124.

Wojciech Kryécinski et al. Improving Abstraction in Text Summarization. Aug. 2018.
arXiv: 1808.07913.

Omer Levy, Yoav Goldberg, and Ido Dagan. “Improving distributional similarity
with lessons learned from word embeddings”. In: Transactions of the Association for
Computational Linguistics 3 (2015), pp. 211-225.

Chin-Yew Lin. “ROUGE: A Package for Automatic Evaluation of summaries”. In:
Text Summarization Branches Out (2004).

Junyang Lin et al. Global Encoding for Abstractive Summarization. 2018. arXiv:
1805.03989.

Zhouhan Lin et al. A Structured Self-attentive Sentence Embedding. 2017. arXiv:
1703.03130.

Linging Liu et al. Generative Adversarial Network for Abstractive Text Summarization.
Nov. 2017. arXiv: 1711.09357.

Peter J Liu et al. Generating Wikipedia by Summarizing Long Sequences. 2018. arXiv:
1801.10198.

65

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1506.05865
http://www.mysmu.edu/faculty/jingjiang/papers/da%7B%5C_%7Dsurvey.pdf
http://arxiv.org/abs/1810.06667
http://arxiv.org/abs/1808.07913
http://arxiv.org/abs/1805.03989
http://arxiv.org/abs/1703.03130
http://arxiv.org/abs/1711.09357
http://arxiv.org/abs/1801.10198

Bibliography

[51]

[52]

66

Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective Approaches
to Attention-based Neural Machine Translation. Aug. 2015. arXiv: 1508.04025.

Andrew L. Maas et al. “Learning word vectors for sentiment analysis”. In: Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies - Volume 1. Portland, Oregon: Association for Computational
Linguistics, 2011, pp. 142-150.

Christopher D Manning and Hinrich Schiitze. Foundations of Statistical Natural
Language Processing. London: MIT Press, 1999.

Christopher Manning, Prabhakar Raghavan, and Hinrich Schiitze. Introduction to
information retrieval. Cambridge University Press, 2008.

Bryan McCann et al. Learned in Translation: Contextualized Word Vectors. 2017.
arXiv: 1708.00107.

Bryan McCann et al. The Natural Language Decathlon: Multitask Learning as Question
Answering. June 2018. arXiv: 1806.08730.

Stephen Merity et al. Pointer Sentinel Mixture Models. 2016. arXiv: 1609.07843.

Tomas Mikolov et al. Efficient Estimation of Word Representations in Vector Space.
2013. arXiv: 1301.3781v3.

Toméas Mikolov et al. “Recurrent neural network based language model”. In: Eleventh
annual conference of the international speech communication association. 2010.

Tom Mitchell. Machine learning. 1997. 1sBN: 0070428077.

Ramesh Nallapati et al. Abstractive Text Summarization Using Sequence-to-Sequence
RNNs and Beyond. 2016. arXiv: 1602.06023.

A Nenkova and K Mckeown. “Automatic Summarization”. In: Foundations and Trends
R in Information Retrieval 5.3 (2011), pp. 103-233. DOI: 10.1561/1500000015.

Romain Paulus, Caiming Xiong, and Richard Socher. A Deep Reinforced Model for
Abstractive Summarization. May 2017. arXiv: 1705.04304.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. “GloVe: Global
Vectors for Word Representation”. In: Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP). 2014, pp. 1532-1543.

Matthew E. Peters et al. Deep contextualized word representations. Feb. 2018. arXiv:
1802.05365.

Matthew E. Peters et al. Semi-supervised sequence tagging with bidirectional language
models. Apr. 2017. arXiv: 1705.00108.

Martin Popel and Ondiej Bojar. “Training Tips for the Transformer Model”. In: The
Prague Bulletin of Mathematical Linguistics 110.1 (2018), pp. 43-70.

Alec Radford et al. Improving Language Understanding by Generative Pre-Training.
Tech. rep. 2018.

Alec Radford et al. Language Models are Unsupervised Multitask Learners. 2019.

Waseem Rawat and Zenghui Wang. “Deep convolutional neural networks for image
classification: A comprehensive review”. In: Neural computation 29.9 (2017), pp. 2352—
2449.

http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1708.00107
http://arxiv.org/abs/1806.08730
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1301.3781v3
http://arxiv.org/abs/1602.06023
http://dx.doi.org/10.1561/1500000015
http://arxiv.org/abs/1705.04304
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1705.00108

Bibliography

Steven J. Rennie et al. Self-critical Sequence Training for Image Captioning. Dec.
2016. arXiv: 1612.00563.

Rami Al-Rfou et al. Character-Level Language Modeling with Deeper Self-Attention.
Aug. 2018. arXiv: 1808.04444.

Sebastian Ruder. “Neural Transfer Learning for Natural Language Processing”. PhD
thesis. National University of Ireland, Galway, 2019.

Sebastian Ruder, Ivan Vuli¢, and Anders Sggaard. A Survey Of Cross-lingual Word
Embedding Models. June 2017. arXiv: 1706.04902.

Alexander M. Rush, Sumit Chopra, and Jason Weston. A Neural Attention Model for
Abstractive Sentence Summarization. Sept. 2015. arXiv: 1509.00685.

Evan Sandhaus. “The New York Times Annotated Corpus”. In: Linguistic Data
Consortium 6(12):€26752, 2008 (2008).

Tobias Schnabel et al. “Evaluation methods for unsupervised word embeddings”.
In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 2015, pp. 298-307.

M. Schuster and K.K. Paliwal. “Bidirectional recurrent neural networks”. In: IEEFE
Transactions on Signal Processing 45.11 (1997), pp. 2673—2681.

Abigail See, Peter J. Liu, and Christopher D. Manning. Get To The Point: Summa-
rization with Pointer-Generator Networks. Apr. 2017. arXiv: 1704.04368.

Dou Shen et al. “Document summarization using conditional random fields”. In: IJCAL
2007, pp. 2862-2867.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. “Sequence to sequence learning with
neural networks”. In: Advances in neural information processing systems. Sept. 2014,
pp- 3104-3112. arXiv: 1409.3215.

Wilson L. Taylor. ““Cloze Procedure”: A New Tool for Measuring Readability”. In:
Journalism Bulletin 30.4 (Sept. 1953), pp. 415-433.

Zhaopeng Tu et al. Modeling Coverage for Neural Machine Translation. Jan. 2016.
arXiv: 1601.04811.

Ashish Vaswani et al. Attention Is All You Need. June 2017. arXiv: 1706.03762.

Yonghui Wu et al. Google’s Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation. Sept. 2016. arXiv: 1609.08144.

Jason Yosinski et al. How transferable are features in deep neural networks? Nov. 2014.
arXiv: 1411.1792.

Tom Young et al. Recent Trends in Deep Learning Based Natural Language Processing.
2018. arXiv: 1708.02709v8.

Yukun Zhu et al. Aligning Books and Movies: Towards Story-like Visual Explanations
by Watching Movies and Reading Books. June 2015. arXiv: 1506.06724.

67

http://arxiv.org/abs/1612.00563
http://arxiv.org/abs/1808.04444
http://arxiv.org/abs/1706.04902
http://arxiv.org/abs/1509.00685
http://arxiv.org/abs/1704.04368
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1601.04811
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1411.1792
http://arxiv.org/abs/1708.02709v8
http://arxiv.org/abs/1506.06724

A. Appendix

A.1. AllenNLP configuration for text summarization on

DailyMail
1 {
2 "dataset_reader": {
3 "type": "summarization",
4 "lazy": true,
5 "source_token_indexers": {
6 "tokens": {
7 "type": "single_id",
8 "namespace": "source_tokens"
9 }
10 I
11 "source_tokenizer": {
12 "type": "word",
13 "word_splitter": { "type": "just_spaces" }
14 +
15 "target_namespace": "target_tokens"
16 }
17 "iterator": {
18 "type": "bucket",
19 "batch_size": 32,
20 "biggest_batch_first": true,
21 "max_instances_in_memory": 1024,
22 // ...
23 1
24 "model": {
25 "type": "copynet_seq2seq",
26 "attention": {
27 "type": "linear",
28 "activation": "tanh",
29 "tensor_1l_dim": 512,
30 "tensor_2_dim": 512
31 +
32 "beam_size": 4,
33 "encoder": {
34 "type": "lstm",
35 "bidirectional": true,
36 "hidden_size": 256,
37 "input_size": 128,
38 "num_layers": 1
39 +
40 "max_decoding_steps": 100,
41 "source_embedder": {
42 "token_embedders": {

CNN /

69

A. Appendix

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

"tokens": {
"type": "embedding",
"embedding_dim": 128,
"trainable": true,
"vocab_namespace": "source_tokens"

+
"token_based_metric": "rouge"
}
"train_data_path": {
"type": "tuple",
"is_training": true,
"source_max_seq_leng": 400,
"source_path": "data/sum/cnndm/train.txt.src",
"target_max_seq_leng": 100,
"target_path": "data/sum/cnndm/train.txt.tgt.tagged"
}
"validation_data_path": {
"type": "tuple",
"source_max_seq_leng": 400,
"source_path": "data/sum/cnndm/val.txt.src",
"target_max_seq_leng": 100,
"target_path": "data/sum/cnndm/val.txt.tgt.tagged"
T,
"trainer": {
"cuda_device": 0,
"grad_clipping": 5,
"grad_norm": 2,
"num_epochs": 20,
"num_serialized_models_to_keep": 3,
"optimizer": {
"type": "adagrad",
"initial_accumulator_value": 0.1,
"lr": 0.15
I
"patience": 20
}
"vocabulary": { "directory_path": "work/allennlp/cnndm_base/vocabulary/50k" },
"validation_iterator": {
"type": "bucket",
"batch_size": 32,
"max_instances_in_memory": 1024,
"padding_noise": 0.1,
"sorting_keys": [[
"source_tokens",
"num_tokens"

11

Listing A.1: Experiment configuration in AllenNLP for the CopyNet model on the CNN/Daily

70

Mail dataset.

	Abstract
	Zusammenfassung
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Research objectives
	Course of investigation

	Theoretical foundations
	Background
	Machine learning
	Natural Language Processing (NLP)

	Language modeling (LM)
	Word embeddings
	Skip-gram and Continuous-Bag-of-Words (CBOW)
	GloVe (Global Vectors)
	Evaluation and interpretation

	Sequence-to-sequence tasks
	Encoder-decoder models
	Bidirectional and deep LSTMs

	Attention
	Global attention
	Self-attention

	The Transformer
	Architectural overview
	Multi-head attention
	Positional encoding
	Applications and developments of the Transformer

	Conclusion

	State-of-the-art in transfer learning for NLP
	Introduction and demarcation
	Contextual embeddings
	Contextual Word Vectors (CoVe)
	Embeddings from Language Models (ELMo)

	Fine-tuning language models
	A framework for pre-training and fine-tuning
	Language modeling using a Transformer
	Bidirectional Encoder Representations from Transformers (BERT)

	Conclusion

	Related work in neural text summarization
	Demarcation and terminology
	Related work
	Model and task-specific components
	Tasks and datasets

	Evaluation of summaries
	Content-based metrics (ROUGE)
	Measuring the abstractive ability

	Conclusion

	Approach and implementation
	CopyNet model as a baseline
	Overview
	Further features

	AllenNLP: A Natural Language Processing Platform
	Architecture overview
	Dataset Reader for text summarization
	CopyNet model

	Experimental setup

	Experiments and discussion
	Features for comparison
	Baseline analysis
	Downsized datasets for this thesis
	Evaluation of the datasets

	Self-attention
	Pre-Trained word embeddings
	Contextual embeddings
	Smaller datasets
	ELMo fine-tuning

	Summary and discussion

	Conclusion and outlook
	Bibliography
	Appendix
	AllenNLP configuration for text summarization on CNN / DailyMail

